Stress response of Salmonella Typhimurium to acidified nitrite
Ontology highlight
ABSTRACT: The antimicrobial action of the curing agent NaNO2, which is added as a preservative to raw meat products, depends on its conversion to nitric oxide and other reactive nitrogen species under acidic conditions. In this study, we applied RNA-sequencing to analyze the acidified NaNO2 shock and adaptive response of Salmonella Typhimurium, a frequent contaminant in raw meat. Upon a 10 minute exposure to 150 mg/l NaNO2 in LB pH 5.5 acidified with lactic acid, genes involved in nitrosative stress protection together with several other stress related genes were induced. To the contrary, genes involved in translation, transcription, replication and motility were down-regulated. Induction of stress tolerance and reduction of cell proliferation obviously promote survival under harsh acidified NaNO2 stress. The subsequent adaptive response was characterized by up-regulation of NsrR-regulated genes and iron-uptake systems and down-regulation of genes involved in anaerobic respiratory pathways. Strikingly, amino acid decarboxylase systems, which contribute to acid tolerance, displayed increased transcript levels in response to acidified NaNO2. The induction of systems known to be involved in acid resistance indicates a nitrite mediated increase of acid stress.
ORGANISM(S): Salmonella enterica subsp. enterica serovar Typhimurium
PROVIDER: GSE57238 | GEO | 2014/08/25
SECONDARY ACCESSION(S): PRJNA246027
REPOSITORIES: GEO
ACCESS DATA