Pi3kcb links Hippo-YAP and PI3K-AKT signaling pathways to promote cardiomyocyte proliferation and survival [microarray]
Ontology highlight
ABSTRACT: Background—YAP, the nuclear effector of Hippo signaling, regulates cellular growth and survival in multiple organs, including the heart, by interacting with TEAD sequence specific DNA-binding proteins. Recent studies showed that YAP stimulates cardiomyocyte proliferation and survival. However, the direct transcriptional targets through which YAP exerts its effects are poorly defined. Methods and Results—To identify genes directly regulated by YAP in cardiomyocytes, we combined differential gene expression analysis in YAP gain- and loss-of-function with genome-wide identification of YAP bound loci using chromatin immunoprecipitation and high throughput sequencing. This screen identified Pik3cb, encoding p110β, a catalytic subunit of phosphoinositol-3-kinase (PI3K), as a candidate YAP effector that promotes cardiomyocyte proliferation and survival. We validated YAP and TEAD occupancy of a conserved enhancer within the first intron of Pik3cb, and show that this enhancer drives YAP-dependent reporter gene expression. Yap gain- and loss-of-function studies indicated that YAP is necessary and sufficient to activate the PI3K-Akt pathway. Like Yap, Pik3cb gain-of-function stimulated cardiomyocyte proliferation, and Pik3cb knockdown dampened the YAP mitogenic activity. Reciprocally, Yap loss-of-function impaired heart function and reduced cardiomyocyte proliferation and survival, all of which were significantly rescued by AAV-mediated Pik3cb expression. Conclusion—Pik3cb is a crucial direct target of YAP, through which the YAP activates PI3K-AKT pathway and regulates cardiomyocyte proliferation and survival.
ORGANISM(S): Mus musculus
PROVIDER: GSE57718 | GEO | 2015/02/20
SECONDARY ACCESSION(S): PRJNA247830
REPOSITORIES: GEO
ACCESS DATA