Project description:Validation of DNA ImmunoPrecipitation with microarray analysis (DIP-chip) technique using the Leu3 DNA binding domain. Keywords: DIP-chip, Leu3
Project description:DNA Immunoprecipitation was performed using purified, naked, genomic DNA and purified recombinant DNA binding domains for S. cerevisiae transcription factors (Cbf1, Leu3, Pho2, Pho4, Rap1, Rox1, and Swi5) and then competitively hybridized against input DNA on NimbleGen 385k whole-genome, 32bp, tiling arrays to identify the consensus sequence for each transcription factor as a whole in the genome.
Project description:In this experiment we wanted to see how the binding behavior of the S. Cerevisiae transcription factor Leu3, on of the main regulators of leucine biosynthesis, is affected by different availability of the branched chain amino acids. For this we grow the cells in shake flask under glucose limitation and treated them 2 hours before sampling. The cells were then cross-linked with formaldehyde and ChIP-seq was performed using the Oxford Nanopore MinIon.
Project description:Genome-wide localization of two new RNA pol II interacting proteins. We use C-LYTAG to map binding sites of Spo14 and Mvp1 along the S. cerevisiae genome. Two biological replicates of each experiment were done. Keywords: ChIp-chip
Project description:1. Comparison of Leu3 binding in vitro and in vivo 2. comparison of nucleosome occupancy between with Leu3-binding and without Leu3-binding This SuperSeries is composed of the SubSeries listed below.
Project description:The individualized treatment of tumors has always been an urgent problem in clinical practice. Organoids-on-a-chip can reflect the heterogeneity of tumors and is a good model for in vitro anticancer drug screening. In this study, surgical specimens of patients with advanced colorectal cancer will be collected for organoid culture and organoids-on-a- chip. Use organoids-on-a-chip to screen tumor chemotherapy drugs, compare the results of patients’ actual medication regimens, and study the guiding role of organoids in the formulation of precise tumor treatment plans. The investigators will compare the response of organoids to drugs in vitro with the patient’s response to actual chemotherapy and targeted drugs and explore the feasibility and accuracy of organoids-on-a-chip based drug screening for advanced colorectal cancer. The project will establish a screening platform for chemotherapeutic drugs and targeted drugs based on colorectal cancer organoids to quickly and accurately formulate personalized treatment plans for clinical patients.