ABSTRACT: HUES24 cell line was nucleofected with POU5f1 cDNA to overexpress OCT4; This leads to the formation of mesendodermal cells Short- and Long-scales intra- and inter-chromosomal interactions are linked to gene transcription, but the molecular event underlying these structures and how it affects cell fate decision during embryonic development are poorly understood. One of the first embryonic cell fate decisions (i.e mesendoderm determination) is driven by the POU factor OCT4, acting in concert with the high mobility group genes SOX-2 and SOX-17. Here, we identify novel chromatin remodelling mechanism and enhancer function driven by both OCT4 and SALL4 that mediate cell fate switching. We found that OCT4 alters the higher-order chromatin structure at both Sox-2 and Sox-17 loci. OCT4 titrates out cohesin and switches the Sox-17 enhancer from a locked (within an inter-chromosomal Sox-2 enhancer/CTCF/cohesin loop) to an active (within an intra-chromosomal Sox-17 promoter/enhancer/cohesin loop) state. SALL4 concomitantly mobilizes the polycomb complexes at the Soxs loci. Thus, OCT4/SALL4-driven cohesin-and polycombs-mediated changes in higher order chromatin structure mediate instruction of early cell fate in embryonic cells.
Project description:HUES24 cell line was nucleofected with POU5f1 cDNA to overexpress OCT4; This leads to the formation of mesendodermal cells Short- and Long-scales intra- and inter-chromosomal interactions are linked to gene transcription, but the molecular event underlying these structures and how it affects cell fate decision during embryonic development are poorly understood. One of the first embryonic cell fate decisions (i.e mesendoderm determination) is driven by the POU factor OCT4, acting in concert with the high mobility group genes SOX-2 and SOX-17. Here, we identify novel chromatin remodelling mechanism and enhancer function driven by both OCT4 and SALL4 that mediate cell fate switching. We found that OCT4 alters the higher-order chromatin structure at both Sox-2 and Sox-17 loci. OCT4 titrates out cohesin and switches the Sox-17 enhancer from a locked (within an inter-chromosomal Sox-2 enhancer/CTCF/cohesin loop) to an active (within an intra-chromosomal Sox-17 promoter/enhancer/cohesin loop) state. SALL4 concomitantly mobilizes the polycomb complexes at the Soxs loci. Thus, OCT4/SALL4-driven cohesin-and polycombs-mediated changes in higher order chromatin structure mediate instruction of early cell fate in embryonic cells. ChIP anti-OCT4 on chip. results_v2.xls file description: Enriched binding sites. Mutant means oct4 overexpressing cells , wt GFP nucleofected cells.
Project description:Embryonic stem cells have potential utility in regenerative medicine due to their pluripotent characteristics. Sall4, a zinc-finger transcription factor, is expressed very early in embryonic development with Oct4 and Nanog, two well characterized pluripotency regulators. Sall4 plays an important role in governing the fate of stem cells through transcriptional regulation of both Oct4 and Nanog. Using chromatin immunoprecipitation coupled to microarray hybridization (ChIP on Chip), we have mapped global gene targets of Sall4 unveiling possible regulation of broad ES cell functions. Approximately 5,000 genes were identified that were bound by the Sall4 protein and many of these have major functions in developmental and regulatory pathways. Sall4 bound more than six times as many annotated genes within promoter regions as Oct4 and twice as many as Nanog. Immunoprecipitation revealed a heterotrimeric protein complex between Sall4, Oct4, and Nanog, consistent with binding site co-occupancies. Further, Sall4 bound many genes that are regulated in part by the chromatin-based epigenetic events mediated by polycomb-repressive complexes and bivalent domains. This suggests that Sall4 plays a central and diverse role in regulating stem cell pluripotency during early embryonic development that involves integration of transcriptional and epigenetic control processes. Keywords: ChIP-chip
Project description:Embryonic stem cells have potential utility in regenerative medicine due to their pluripotent characteristics. Sall4, a zinc-finger transcription factor, is expressed very early in embryonic development with Oct4 and Nanog, two well characterized pluripotency regulators. Sall4 plays an important role in governing the fate of stem cells through transcriptional regulation of both Oct4 and Nanog. Using chromatin immunoprecipitation coupled to microarray hybridization (ChIP on Chip), we have mapped global gene targets of Sall4 unveiling possible regulation of broad ES cell functions. Approximately 5,000 genes were identified that were bound by the Sall4 protein and many of these have major functions in developmental and regulatory pathways. Sall4 bound more than six times as many annotated genes within promoter regions as Oct4 and twice as many as Nanog. Immunoprecipitation revealed a heterotrimeric protein complex between Sall4, Oct4, and Nanog, consistent with binding site co-occupancies. Further, Sall4 bound many genes that are regulated in part by the chromatin-based epigenetic events mediated by polycomb-repressive complexes and bivalent domains. This suggests that Sall4 plays a central and diverse role in regulating stem cell pluripotency during early embryonic development that involves integration of transcriptional and epigenetic control processes. Keywords: ChIP-chip We used ChIP-chip to map global promoter bound by Sall4, a zinc finger transcription factor. Growing evidence has suggested that Sall4 plays a vital role in ES cell pluripotency maintenance. Evidence for this includes its recent use as a marker for somatic cell reprogramming, in a genetic signature for ES cells, and evidence that Sall4 enhances reprogramming. These recent findings and two previously described interactions with Oct4 and Nanog strongly support the role of Sall4 in ES cells. This hypothesis was furthered here as we show that Sall4 plays important roles through transcriptional regulation of vital ES cell genes.
Project description:The relationship between chromatin organization and transcriptional regulation is an area of intense investigation. We have characterized the spatial relationships between alleles of the Oct4, Sox2, and Nanog genes in single cells during the earliest stages of mouse embryonic stem cell (ESC) differentiation and during embryonic development. We describe homologous pairing of the Oct4 alleles during ESC differentiation and embryogenesis, and present evidence that pairing is correlated with the kinetics of ESC differentiation. Importantly, we identify critical DNA elements within the Oct4 promoter/enhancer region that mediate pairing of Oct4 alleles. Finally, we show that mutation of OCT4/SOX2 binding sites within this region abolishes inter-chromosomal interactions and affects accumulation of the repressive H3K9me2 modification at the Oct4 enhancer. Our findings demonstrate that chromatin organization and transcriptional programs are intimately connected in ESCs, and that the dynamic positioning of the Oct4 alleles is associated with the transition from pluripotency to lineage specification. Examination of chromatin contacts between Oct4 alleles using PE-4Cseq
Project description:The pluripotent state of embryonic stem cells (ESCs) is produced by active transcription of cell identity genes and repression of genes encoding lineage-specifying developmental regulators. Here we use large ESC cohesin ChIA-PET datasets and other genomic data to identify the local chromosomal structures at both active and repressed genes across the genome. The results show that super-enhancer driven cell identity genes generally occur within large loops that are connected through CTCF-CTCF interaction sites occupied by cohesin. Smc1 ChIA-PET data from wild type murine embryonic stem cells V6.5 were generated by deep sequencing using Illumina Hi-Seq 2000.
Project description:The pluripotent state of embryonic stem cells (ESCs) is produced by active transcription of cell identity genes and repression of genes encoding lineage-specifying developmental regulators. Here we use large ESC cohesin ChIA-PET datasets and other genomic data to identify the local chromosomal structures at both active and repressed genes across the genome. The results show that super-enhancer driven cell identity genes generally occur within large loops that are connected through CTCF-CTCF interaction sites occupied by cohesin. H3K27me3 ChIP-seq data from wild type murine embryonic stem cells V6.5 were generated by deep sequencing using Illumina Hi-Seq 2000.
Project description:A small number of transcription factors, including Oct-3/4 and Sox2, constitute the transcriptional network that maintains pluripotency in embryonic stem (ES) cells. Previous reports suggested that some of these factors form a complex that binds the Oct-Sox element, a composite sequence consisting of closely juxtaposed Oct-3/4-binding and Sox2-binding sites. However, little is known regarding the components of the complex. In this study, we show that Sall4, a member of the Spalt-like family of proteins, directly interacts with Sox2 and Oct-3/4. Sall4 in combination with Sox2 or Oct-3/4 simultaneously occupies the Oct-Sox elements in mouse ES cells. Sall4 knockdown led to differentiation of ES cells. Overexpression of Sall4 in ES cells increased reporter activities in a luciferase assay when the Pou5f1- or Nanog-derived Oct-Sox element was included in the reporter. Microarray analyses revealed that Sall4 and Sox2 bound to the same genes in ES cells significantly more frequently than expected from random coincidence. These factors appeared to bind the promoter regions of a subset of the Sall4- and Sox2-double-positive genes in precisely similar distribution patterns along the promoter regions, suggesting that Sall4 and Sox2 associate with such Sall4/Sox2-overlapping genes as a complex. Importantly, gene ontology analyses indicated that the Sall4/Sox2-overlapping gene set is enriched for genes involved in maintaining pluripotency. Sall4/Sox2/Oct-3/4-triple-positive genes identified by referring to a previous study identifying Oct-3/4-bound genes in ES cells were further enriched for pluripotency genes than Sall4/Sox2-double-positive genes. These results demonstrate that Sall4 contributes to the transcriptional network operating in pluripotent cells, together with Oct-3/4 and Sox2. ChIP-on-chip experiments using anti-Sall4 or anti-Sox2 antibody were performed.