M-CSF priming of osteoclast precursors can cause osteoclastogenesis-insensitivity, which can be prevented and overcome on bone
Ontology highlight
ABSTRACT: Comparison of gene expression of the osteoclast precursor myeloid blast seeded on plastic and on bone, primed with M-CSF for 4 days and culture with M-CSF and RANKL for 1 day. Osteoclasts and macrophages share progenitors that must receive decisive lineage signals driving them into their respective differentiation routes. Macrophage colony stimulation factor M-CSF is a common factor; bone is likely the stimulus for osteoclast differentiation. To elucidate the effect of both, shared mouse bone marrow precursor myeloid blast was pre-cultured with M-CSF on plastic and on bone. M-CSF priming prior to stimulation with M-CSF and osteoclast differentiation factor RANKL resulted in a complete loss of osteoclastogenic potential without bone. This coincided with a steeply decreased expression of osteoclast genes TRACP and DC-STAMP, but an increased expression of the macrophage markers F4/80 and CD11b. Compellingly, M-CSF priming on bone accelerated the osteoclastogenic potential: M-CSF primed cells that had received only one day M-CSF and RANKL and were grown on bone already expressed an array of genes that are associated with osteoclast differentiation and these cells differentiated into osteoclasts within 2 days. This implies that adhesion to bone dictates the fate of osteoclast precursors. Common macrophage-osteoclast precursors may become insensitive to differentiate into osteoclasts and regain osteoclastogenesis when bound to bone or when in the vicinity of bone.
ORGANISM(S): Mus musculus
PROVIDER: GSE58146 | GEO | 2014/06/02
SECONDARY ACCESSION(S): PRJNA251382
REPOSITORIES: GEO
ACCESS DATA