Differential gene expression in the skin of dogs sensitized to the house dust mite Dermatophagoides farinae
Ontology highlight
ABSTRACT: Atopic dermatitis is a multifactorial allergic skin disease in humans and dogs. Genetic predisposition, immunologic hyperreactivity, a defective skin barrier and environmental factors play a role in its pathogenesis. The aim of this study was to analyze gene expression in the skin of dogs sensitized to house dust mite antigens. Skin biopsies were collected from six sensitized and six non-sensitized Beagle dogs from normal, non-treated skin before and six and 24 hours after challenge using skin patches with allergen or saline as a negative control. Transcriptome analysis was performed by the use of DNA microarrays and expression of selected genes was validated by quantitative real-time RT-PCR. Expression data was compared between groups (unpaired design). After 24 hours 597 differentially expressed genes were detected, 361 with higher and 226 with lower mRNA concentration in allergen treated skin of sensitized dogs compared to their saline-treated skin and compared to the control specimens. Functional annotation clustering, pathway-and co-citation analysis showed, that the genes with increased expression were involved in inflammation, wound healing and immune response. In contrast, genes with decreased expression in sensitized dogs were associated with differentiation and barrier function of the skin. As the sensitized dogs did not show differences in the untreated skin compared to controls, inflammation after allergen patch test probably led to a decrease in the expression of genes important for barrier formation. Our results further confirm the similar pathophysiology of human and canine atopic dermatitis and revealed genes previously not known to be involved in canine atopic dermatitis.
ORGANISM(S): Canis lupus familiaris
PROVIDER: GSE58442 | GEO | 2014/09/23
SECONDARY ACCESSION(S): PRJNA252617
REPOSITORIES: GEO
ACCESS DATA