Nuclear organization of active and inactive chromatin domains revealed by 4C technology
Ontology highlight
ABSTRACT: The spatial organization of DNA in the cell nucleus is an emerging key contributor to genomic function. We have developed 4C technology, or 3C-on-chip, which allows for an unbiased genome-wide search for DNA loci that contact a given locus in the nuclear space. We demonstrate here that active and inactive genes are engaged in many long-range intrachromosomal interactions and can also form interchromosomal contacts. The active b-globin locus in fetal liver contacts mostly transcribed, but not necessarily tissue-specific, loci elsewhere on chromosome 7, while the inactive locus in fetal brain contacts different, transcriptionally silent, loci. A housekeeping gene in a gene dense region on chromosome 8 forms long-range contacts predominantly with other active gene clusters, both in cis and in trans, and many of these intra- and interchromosomal interactions are conserved between the tissues analyzed. Our data demonstrate that chromosomes fold into areas of active chromatin and areas of inactive chromatin and establish 4C technology as a powerful tool to study nuclear architecture. Keywords: 4C technology
ORGANISM(S): Mus musculus
PROVIDER: GSE5891 | GEO | 2006/09/22
SECONDARY ACCESSION(S): PRJNA97317
REPOSITORIES: GEO
ACCESS DATA