Gene expression analysis of a double knockout of TCA cycle enzymes IDH and KDH
Ontology highlight
ABSTRACT: New antimalarial drugs are urgently needed to control drug resistant forms of the malaria parasite, Plasmodium falciparum. Although mitochondrial metabolism is the target of both existing drugs and new lead compounds, the role of the mitochondrial tricarboxylic acid (TCA) cycle remains poorly understood. Herein, we describe 11 genetic knockout parasite lines that delete six of the eight TCA cycle enzymes. Although all TCA knockouts grew normally in asexual blood stages, these metabolic deficiencies halted lifecycle progression in later stages. Specifically, aconitase knockout parasites arrested as late gametocytes, whereas α-ketoglutarate dehydrogenase deficient parasites failed to develop oocysts in the mosquitoes. Mass-spectrometry analysis of 13C isotope-labeled TCA mutant parasites showed that P. falciparum has significant flexibility in TCA metabolism. This flexibility manifested itself through changes in pathway fluxes and through altered exchange of substrates between cytosolic and mitochondrial pools. Our findings suggest that mitochondrial metabolic plasticity is essential for parasite development .
ORGANISM(S): Plasmodium falciparum
PROVIDER: GSE59015 | GEO | 2014/08/01
SECONDARY ACCESSION(S): PRJNA254114
REPOSITORIES: GEO
ACCESS DATA