A Highly Sensitive and Specific System for Large-scale Gene Expression Profiling
Ontology highlight
ABSTRACT: Gene expression profiling of very few or even single cells is of particular interest in many applications. However, detection of a large number of mRNA sequences from a small number of cells is limited by the sensitivity of available methods. High-throughput multiplex reverse transcription followed by PCR amplification (RT-PCR) has much to offer to these studies due to its inherent sensitivity, efficiency and cost-effectiveness. A multiplex RT-PCR based high-throughput gene profiling system is described in this communication. With this system >1000 different mRNA species can be amplified in a single tube to a detectable amount. By using specially designed PCR primers, the long-standing low specificity problem associated with high-throughput gene expression profiling has been solved. Amplified sequences are then resolved by microarray with probes that only hybridize to sequences amplified from mRNA. The method is so sensitive that mRNA in single cells can be reliably detected. Differentially expressed genes identified with the high-throughput approach in the breast cancer cell line, MCF-7, and its drug resistant variant, MCF-7/AdrR, could be validated by a different method. The approach may greatly facilitate the analysis of combinatorial expression of known genes in any cells in many important applications with a limited amount of RNA. Keywords: drug resistence
ORGANISM(S): Homo sapiens
PROVIDER: GSE5920 | GEO | 2007/06/01
SECONDARY ACCESSION(S): PRJNA97363
REPOSITORIES: GEO
ACCESS DATA