Project description:The actions of environmental toxicants and relevant mixtures in promoting the epigenetic transgenerational inheritance of ovarian disease was investigated with the use of a fungicide, a pesticide mixture, a plastic mixture, dioxin and a hydrocarbon mixture. After transient exposure of an F0 gestating female rat during embryonic gonadal sex determination, the F1 and F3 generation progeny adult onset ovarian disease was assessed. Transgenerational disease phenotypes observed included an increase in cysts resembling human polycystic ovarian disease (PCO) and a decrease in the ovarian primordial follicle pool size resembling primary ovarian insufficiency (POI). The F3 generation granulosa cells were isolated and found to have a transgenerational effect on the transcriptome and epigenome (differential DNA methylation). Epigenetic biomarkers for environmental exposure and associated gene networks were identified. Epigenetic transgenerational inheritance of ovarian disease states was induced by all the different classes of environmental compounds, suggesting a role of environmental epigenetics in ovarian disease etiology.
Project description:The actions of environmental toxicants and relevant mixtures in promoting the epigenetic transgenerational inheritance of ovarian disease was investigated with the use of a fungicide, a pesticide mixture, a plastic mixture, dioxin and a hydrocarbon mixture. After transient exposure of an F0 gestating female rat during embryonic gonadal sex determination, the F1 and F3 generation progeny adult onset ovarian disease was assessed. Transgenerational disease phenotypes observed included an increase in cysts resembling human polycystic ovarian disease (PCO) and a decrease in the ovarian primordial follicle pool size resembling primary ovarian insufficiency (POI). The F3 generation granulosa cells were isolated and found to have a transgenerational effect on the transcriptome and epigenome (differential DNA methylation). Epigenetic biomarkers for environmental exposure and associated gene networks were identified. Epigenetic transgenerational inheritance of ovarian disease states was induced by all the different classes of environmental compounds, suggesting a role of environmental epigenetics in ovarian disease etiology. Granulosa cells from large antral follicles were collected and evaluated from F3 generation rats that were ancestrally exposed to one of the five different treatments: Vinclozolin, Pesticide (includes permethrin and DEET), Plastics (includes BPA, DBP and DEHP), Low-dose Plastics (50% of Plastics dose), Dioxin, Hydrocarbon (Jet fuel JP8), or DMSO vehicle as Control. Vinclozolin lineage alterations in differentially DNA methylated regions (DMR) in the granulosa cells was investigated by using a methylated DNA immunoprecipitation (MeDIP) procedure followed by comparative hybridization on a genome wide promoter tiling array (Chip), termed an MeDIP-Chip assay. The DNA fractions from four animals of the same treatment group were pooled to create three different pooled DNA samples from each of the two treatment groups (experimental vs. control). These DNA samples were then used for methylated DNA immunoprecipitation (MeDIP) using Nimblegen microarrays. Each MeDIP sample was then used to preform three different comparative (amplified MeDIP vs. amplified MeDIP) hybridization experiments (3 sub-arrays), each encompassing DNA samples from 24 animls (3 treatment and 3 control groups).
Project description:The actions of environmental toxicants and relevant mixtures in promoting the epigenetic transgenerational inheritance of ovarian disease was investigated with the use of a fungicide, a pesticide mixture, a plastic mixture, dioxin and a hydrocarbon mixture. After transient exposure of an F0 gestating female rat during embryonic gonadal sex determination, the F1 and F3 generation progeny adult onset ovarian disease was assessed. Transgenerational disease phenotypes observed included an increase in cysts resembling human polycystic ovarian disease (PCO) and a decrease in the ovarian primordial follicle pool size resembling primary ovarian insufficiency (POI). The F3 generation granulosa cells were isolated and found to have a transgenerational effect on the transcriptome and epigenome (differential DNA methylation). Epigenetic biomarkers for environmental exposure and associated gene networks were identified. Epigenetic transgenerational inheritance of ovarian disease states was induced by all the different classes of environmental compounds, suggesting a role of environmental epigenetics in ovarian disease etiology.
Project description:A variety of environmental factors have been shown to induce the epigenetic transgenerational inheritance of disease and phenotypic variation. This involves the germline transmission of epigenetic information between generations. Exposure specific transgenerational sperm epimutations have been previously observed. The current study was designed to investigate the potential role genetic mutations have in the process, using copy number variations (CNV). In the first (F1) generation following exposure, negligible CNV were identified; however, in the transgenerational F3 generation, a significant increase in CNV was observed in the sperm. The genome-wide locations of differential DNA methylation regions (epimutations) and genetic mutations (CNV) were investigated. Observations suggest the environmental induction of the epigenetic transgenerational inheritance of sperm epimutations promote genome instability, such that genetic CNV mutations are acquired in later generations. A combination of epigenetics and genetics is suggested to be involved in the transgenerational phenotypes. The ability of environmental factors to promote epigenetic inheritance that subsequently promotes genetic mutations is a significant advance in our understanding of how the environment impacts disease and evolution.
Project description:Environmentally induced epigenetic transgenerational inheritance of adult onset disease involves a variety of phenotypic changes suggesting a general alteration in genome activity. Investigation of eleven different tissue transcriptomes in male and female F3 generation vinclozolin versus control lineage rats demonstrated all tissues examined had unique transgenerational transcriptomes. Common cellular pathways and processes were identified among the tissues. A bionetwork analysis identified gene modules with coordinated gene expression and each had unique gene networks regulating tissue specific gene expression and function. A large number of statistically significant over-represented clusters of differentially expressed genes were identified and termed M-bM-^@M-^\Epigenetic Control RegionsM-bM-^@M-^]. Combined observations demonstrate that all tissues derived from the epigenetically altered germ line develop transgenerational transcriptomes unique to the tissue, but common epigenetic control regions in the genome appear to in part coordinately regulate these tissue specific transcriptomes. This systems biology approach provides insight into the molecular mechanisms involved in the epigenetic transgenerational inheritance of a variety of adult onset disease phenotypes. We used microarrays to determine genes expressed differentially in rats 11 male or female smatic tissues -male heart, kidney, liver, testis, prostate, seminal vesicles; female heart, kidney, liver, ovary, uterus - due to Vinclozolin treatments of their grand-grandmothers. For each of 11 male or female smatic tissues, RNA samples from 2 treatment groups - control (Con) and vinclozolin (Vin) - were compared to each other. Each treatment groups contained 3 biological replica. RNA for each replica was pooled from 2 individual animals.
Project description:A critical transcription factor required for mammalian male sex determination is SRY (sex determining region on the Y chromosome). The expression of SRY in precursor Sertoli cells is one of the initial events in testis development. The current study was designed to determine the impact of environmentally induced epigenetic transgenerational inheritance on SRY binding during gonadal sex determination in the male. The agricultural fungicide vinclozolin and vehicle control (DMSO) exposed gestating females (F0 generation) during gonadal sex determination promoted the transgenerational inheritance of differential DNA methylation in sperm of the F3 generation (great grand-offspring). The fetal gonads in F3 generation males were used to identify potential alterations in SRY binding sites in the developing Sertoli cells. Chromatin immunoprecipitation with an SRY antibody followed by genome-wide promoter tiling array (ChIP-Chip) was used to identify alterations in SRY binding. A total of 81 adjacent oligonucleotide sites and 173 single oligo SRY binding sites were identified to be altered transgenerationally in the Sertoli cell vinclozolin lineage F3 generation males. Observations demonstrate the majority of the previously identified normal SRY binding sites were not altered and the altered SRY binding sites were novel and new additional sites. The chromosomal locations, gene associations and potentially modified cellular pathways were investigated. In summary, environmentally induced epigenetic transgenerational inheritance of germline epimutations appears to alter the cellular differentiation and development of the precursor Sertoli cell SRY binding during gonadal sex determination that influence the developmental origins of adult onset testis disease.