Project description:In order to ensure the reproducibility of the transcriptional response of Halobacterium NRC-1 to oxic/anoxic transitions, we repeated global mRNA measurements for the oxygen time series data in GSE5924, except that cultures were equilibrated to high oxygen for 12 hours prior to the start of the experiment rather than low oxygen. The results of these data suggest that there is good (~60%) reproducibility between datasets, and that Halobacterium responds robustly to oxic/anoxic transitions. Keywords: time series
Project description:To gain a comprehensive systems-level understanding of cellular phenotypes, it is critical to characterize the relationship between the dynamic transcriptome and proteome during environmental perturbations. Previous comparisons have shown a lack of correlation between mRNA and protein level measurements suggesting a predominant role for post-transcriptional regulation in mediating cellular environmental responses. To investigate the extent of post-transcriptional regulation, we have analyzed transcriptome and proteome level changes over a 13-hour 28-point time course during transitions between oxic and anoxic physiologies of Halobacterium. Integrated computational analyses of these data show that temporally shifting mRNA and protein profiles relative to one another significantly increases the mRNA/protein correlation. Although time lags for unrelated genes vary widely, we observe similar temporal lags between the transcription and translation of functionally related genes. In contrast, no significant temporal separation was observed within the transcript profiles. Taken together, these data suggest that while there is indeed a direct correlation between many corresponding changes at mRNA and protein levels, translational delay may be the predominant mechanism for the temporal regulation of protein abundance during physiological oxic/anoxic transitions in Halobacterium. The approach and algorithms delineated in this study provide a framework for incorporating the temporal dimension of information processing across many different layers of gene regulation. Keywords: time course
Project description:We used metatranscriptomics to study the gene transcription patterns of microbial plankton (0.2 to 64 μm) at a mesohaline station in the Chesapeake Bay under transitions from oxic to anoxic waters in spring and from anoxic to oxic waters in autumn. Samples were collected from surface (i.e., above pycnocline) waters (3 m) and from waters beneath the pycnocline (16 to 22 m) in both 2010 and 2011. Metatranscriptome profiles based on function and potential phylogeny were different between 2010 and 2011 and strongly variable in 2011. This difference in variability corresponded with a highly variable ratio of eukaryotic to bacterial sequences (0.3 to 5.5), reflecting transient algal blooms in 2011 that were absent in 2010. The similarity between metatranscriptomes changed at a lower rate during the transition from oxic to anoxic waters than after the return to oxic conditions. Transcripts related to photosynthesis and low-affinity cytochrome oxidases were significantly higher in shallow than in deep waters, while in deep water genes involved in anaerobic metabolism, particularly sulfate reduction, succinyl coenzyme A (succinyl-CoA)-to-propionyl-CoA conversion, and menaquinone synthesis, were enriched relative to in shallow waters. Expected transitions in metabolism between oxic and anoxic deep waters were reflected in elevated levels of anaerobic respiratory reductases and utilization of propenediol and acetoin. The percentage of archaeal transcripts increased in both years in late summer (from 0.1 to 4.4% of all transcripts in 2010 and from 0.1 to 6.2% in 2011). Denitrification-related genes were expressed in a predicted pattern during the oxic-anoxic transition. Overall, our data suggest that Chesapeake Bay microbial assemblages express gene suites differently in shallow and deep waters and that differences in deep waters reflect variable redox states.
Project description:We report the complete sequence of an extreme halophile, Halobacterium sp. NRC-1, harboring a dynamic 2,571,010-bp genome containing 91 insertion sequences representing 12 families and organized into a large chromosome and 2 related minichromosomes. The Halobacterium NRC-1 genome codes for 2,630 predicted proteins, 36% of which are unrelated to any previously reported. Analysis of the genome sequence shows the presence of pathways for uptake and utilization of amino acids, active sodium-proton antiporter and potassium uptake systems, sophisticated photosensory and signal transduction pathways, and DNA replication, transcription, and translation systems resembling more complex eukaryotic organisms. Whole proteome comparisons show the definite archaeal nature of this halophile with additional similarities to the Gram-positive Bacillus subtilis and other bacteria. The ease of culturing Halobacterium and the availability of methods for its genetic manipulation in the laboratory, including construction of gene knockouts and replacements, indicate this halophile can serve as an excellent model system among the archaea.
Project description:This SuperSeries is composed of the following subset Series: GSE15272: Diurnally synchronized transitions between oxic and anoxic physiologies in an archaeon, experiment "A" GSE15273: Diurnally synchronized transitions between oxic and anoxic physiologies in an archaeon, experiment "B" GSE15274: Diurnally synchronized transitions between oxic and anoxic physiologies in an archaeon, experiment "Control-1" GSE15275: Diurnally synchronized transitions between oxic and anoxic physiologies in an archaeon, experiment "C" GSE15276: Diurnally synchronized transitions between oxic and anoxic physiologies in an archaeon, experiment "Control-2" Refer to individual Series
Project description:By sensing changes in one or few environmental factors biological systems can anticipate future changes in multiple factors over a wide range of time scales (daily to seasonal). This anticipatory behavior is important to the fitness of diverse species, and in context of the diurnal cycle it is overall typical of eukaryotes and some photoautotrophic bacteria but is yet to be observed in archaea. Here, we report the first observation of light-dark (LD)-entrained diurnal oscillatory transcription in up to 12% of all genes of a halophilic archaeon Halobacterium salinarum NRC-1. Significantly, the diurnally entrained transcription was observed under constant darkness after removal of the LD stimulus (free-running rhythms). The memory of diurnal entrainment was also associated with the synchronization of oxic and anoxic physiologies to the LD cycle. Our results suggest that under nutrient limited conditions halophilic archaea take advantage of the causal influence of sunlight (via temperature) on O2 diffusivity in a closed hypersaline environment to streamline their physiology and operate oxically during nighttime and anoxically during daytime.
Project description:By sensing changes in one or few environmental factors biological systems can anticipate future changes in multiple factors over a wide range of time scales (daily to seasonal). This anticipatory behavior is important to the fitness of diverse species, and in context of the diurnal cycle it is overall typical of eukaryotes and some photoautotrophic bacteria but is yet to be observed in archaea. Here, we report the first observation of light-dark (LD)-entrained diurnal oscillatory transcription in up to 12% of all genes of a halophilic archaeon Halobacterium salinarum NRC-1. Significantly, the diurnally entrained transcription was observed under constant darkness after removal of the LD stimulus (free-running rhythms). The memory of diurnal entrainment was also associated with the synchronization of oxic and anoxic physiologies to the LD cycle. Our results suggest that under nutrient limited conditions halophilic archaea take advantage of the causal influence of sunlight (via temperature) on O2 diffusivity in a closed hypersaline environment to streamline their physiology and operate oxically during nighttime and anoxically during daytime.
Project description:By sensing changes in one or few environmental factors biological systems can anticipate future changes in multiple factors over a wide range of time scales (daily to seasonal). This anticipatory behavior is important to the fitness of diverse species, and in context of the diurnal cycle it is overall typical of eukaryotes and some photoautotrophic bacteria but is yet to be observed in archaea. Here, we report the first observation of light-dark (LD)-entrained diurnal oscillatory transcription in up to 12% of all genes of a halophilic archaeon Halobacterium salinarum NRC-1. Significantly, the diurnally entrained transcription was observed under constant darkness after removal of the LD stimulus (free-running rhythms). The memory of diurnal entrainment was also associated with the synchronization of oxic and anoxic physiologies to the LD cycle. Our results suggest that under nutrient limited conditions halophilic archaea take advantage of the causal influence of sunlight (via temperature) on O2 diffusivity in a closed hypersaline environment to streamline their physiology and operate oxically during nighttime and anoxically during daytime.