Role of areca nut induced TGF-β and epithelial mesenchymal interaction in pathogenesis of precancerous Oral submucous fibrosis
Ontology highlight
ABSTRACT: To understand the role of areca nut and TGF-β induced gene expression changes in fibroblasts and its contibution in the manifestation of Oral submucous fibrosis, we studied gene expression profile in primary human gingival fibroblast (hGF) cells following treatment with areca nut, TGF-β and both together.
Project description:To understand the role of areca nut and TGF-β induced gene expression changes in fibroblasts and its contibution in the manifestation of Oral submucous fibrosis, we studied gene expression profile in primary human gingival fibroblast (hGF) cells following treatment with areca nut, TGF-β and both together. Control Vs Areca nut 5 µg/ml water extract (5H) (2), Contro Vs TGF-β (2), Control Vs Areca nut (5 µg/ml) and TGF-β (5 ng/ml) (5H+T) (2). (2)- Biological duplicates.
Project description:To understand the role of areca nut constituents in manifestation of Oral submucous fibrosis, we studied gene expression profile in epithelial cells following areca nut water extract treatment. A comaprison with TGF-beta induced gene expression changes were performed as epithelial cells were predicted to be source of TGF-beta. Control Vs Areca nut 5 ug/ml water extract (5H) (2), Contro Vs TGF-beta (2), Control Vs ALK5 (TbetaRI inhibitor) (2), Control Vs 5H + ALK5 inhibitor (2). (2)- Biological duplicates.
Project description:To understand the role of areca nut constituents in manifestation of Oral submucous fibrosis, we studied gene expression profile in epithelial cells following areca nut water extract treatment. A comaprison with TGF-beta induced gene expression changes were performed as epithelial cells were predicted to be source of TGF-beta.
Project description:Areca nut(Areca catechu L.) is commonly consumed as a chewing food in the Asian region. However, the investigations into the components of areca nut are limited. In this study, we have developed an approach that combines mass spectrometry with feature-based molecular network to explore the chemical characteristics of the areca nut. In comparison to the conventional method, this technique demonstrates a superior capability in annotating unknown compounds present in areca nut. We annotated a total of 52 compounds, including one potential previously unreported alkaloids, one carbohydrate, and one phenol and confirmed the presence of 6 of them by comparing with commercial standards. The validated method was used to evaluate chemical features of areca nut at different growth stages, annotating 25 compounds as potential biomarkers for distinguishing areca nut growth stages. Therefore, this approach offers a rapid and accurate method for the component analysis of areca nut.
Project description:Chewing betel nut is an important risk factor for the carcinogenesis of tongue squamous cell carcinoma (TSCC), but the mechanism is still unknown.To screen the lncRNAs associated with betel nut chewing-induced TSCC and identify potential biomarkers for the TSCC, we collected 5 pairs of TSCC and paracancerous tissues and monitored the resultant lncRNA and mRNA expression profiles using an lncRNA microarray. All 5 patients have a history of areca nut chewing.
Project description:Areca nut(Areca catechu L.) is commonly consumed as a chewing food in the Asian region. However, the investigations into the components of areca nut are limited. In this study, we have developed an approach that combines mass spectrometry with feature-based molecular network to explore the chemical characteristics of the areca nut. In comparison to the conventional method, this technique demonstrates a superior capability in annotating unknown compounds present in areca nut. We annotated a total of 52 compounds, including one potential previously unreported alkaloids, one carbohydrate, and one phenol and confirmed the presence of 6 of them by comparing with commercial standards. The validated method was used to evaluate chemical features of areca nut at different growth stages, annotating 25 compounds as potential biomarkers for distinguishing areca nut growth stages. Therefore, this approach offers a rapid and accurate method for the component analysis of areca nut.
Project description:Oral submucous fibrosis (OSF) is potentially premalignant with progressive and irreversible extracellular matrix deposition accompanied by epithelial atrophy and like other fibrotic disorders, is primarily a TGF-β driven disease. OSF is caused by prolonged chewing of areca nut. Our previous studies reported a pivotal role for TGF-β activation and its effects contributing to OSF. However, the mechanism for activation of TGF-β signaling in OSF is still unknown. In this study we demonstrate activation of TGF-β signaling with sub-cytotoxic dose of areca nut in epithelial cells and discovered a key role for pJNK in this process. In good correlation; pJNK was detected in OSF tissues but not in normal tissues. Moreover, activation of JNK was found to be dependent on muscarinic acid receptor induced Ca2+/CAMKII as well as ROS. JNK dependent phosphorylation of ATF2/c-Jun transcription factors resulted in TGF-β transcription and its signaling. pATF2/p-c-Jun were enriched on TGF-β promoter and co-localized in nuclei of epithelial cells upon areca nut treatment. In corroboration, OSF tissue sections also had nuclear pATF2 and p-c-Jun. Our results provide comprehensive mechanistic details of TGF-β signaling induced by etiological agent areca nut in the manifestation of fibrosis which can lead to new therapeutic modalities for OSF.
Project description:OBJECTIVES: To characterize the sonographic features of the buccal mucosa in patients with oral submucous fibrosis (OSF). METHODS: Three groups (controls with areca-related habits, controls without areca-related habits and clinically diagnosed OSF cases), each comprising 30 subjects, were included in the study. After a thorough clinical examination, transcutaneous B-mode ultrasonography was performed with a multifrequency linear transducer (5-10 MHz) for anterior and posterior buccal mucosa bilaterally. Both clinical and ultrasound findings were recorded by three independent observers. One-way analysis of variance and Tukey's honestly significant difference post-hoc tests were used for statistical comparisons between groups and Pearson χ(2) tests to compare the proportions. Kappa statistics was used to determine the interobserver agreement. RESULTS: The submucosa that appeared hypoechoic in the control groups had significantly increased echogenicity in the case group (hypo- to isoechoic in 46.7% and isoechoic in 53.3%). The differentiation between the submucosa and the muscle layer appeared distinct in the control groups while it was not clear in the case group (indistinct in 50% and completely lost in 50%). The number of sites found positive on the ultrasound was significantly greater than the number of clinically positive sites. There was a very good interobserver consistency in clinical and ultrasound findings. CONCLUSIONS: Ultrasonography of the buccal mucosa demonstrates increased submucosal echogenicity and reduced echo differentiation between submucosa and muscle layer in OSF cases. Hence, it can be used as a non-invasive imaging modality to assess the disease extent and severity across the entire buccal mucosa to supplement clinical evaluation.