Polycomb PRC2 antagonizes de novo DNA methylation at the maternal Gtl2-Rian-Mirg locus [Next-Gen Sequence Data]
Ontology highlight
ABSTRACT: Wild-type mouse embryonic stem cells are compared with mutants for components of PRC2 including Ezh2-/-, Eed-/-, and Jarid2-/- cells. Chromatin modifications, Gene expression, Pol-II, small-RNA sequencing, and DNA methylation are compared for both cell types.
Project description:Wild-type mouse embryonic stem cells are compared with mutants for components of PRC2 including Ezh2-/-, Eed-/-, and Jarid2-/- cells. Chromatin modifications, Gene expression, Pol-II, small-RNA sequencing, and DNA methylation are compared for both cell types. To study genomic and epigentic control of PRC2 in mESCs, we designed gene expression analysis (RNA-Seq and small RNA-Seq), combining with ChIP-Seq analysis of several factors and histone marks from wild-type and distinct PRC2 mutants including wild-type, Ezh2-/-, Eed-/-, and Jarid2-/-.
Project description:Wild-type mouse embryonic stem cells are compared with mutants for components of PRC2 including Ezh2-/-, Eed-/-, and Jarid2-/- cells. Gene expression microarrays were used to compare the expression for these. This experiment compares wild-type gene expression with mutants for different PRC2 components, including Ezh2-/-, Eee-/- and Jarid2-/- with two replicates for each using Affymetrix Gene Expression Arrays.
Project description:Wild-type mouse embryonic stem cells are compared with mutants for components of PRC2 including Ezh2-/-, Eed-/-, and Jarid2-/- cells. Gene expression microarrays were used to compare the expression for these.
Project description:Polycomb Repressive Complex 2 (PRC2) function and DNA methylation (DNAme) are typically correlated with gene repression. Here, we show that PRC2 is required to maintain expression of maternal microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) from the Gtl2-Rian-Mirg locus, which is essential for full pluripotency of iPSCs. In the absence of PRC2, the entire locus becomes transcriptionally repressed due to gain of DNAme at the intergenic differentially methylated regions (IG-DMRs). Furthermore, we demonstrate that the IG-DMR serves as an enhancer of the maternal Gtl2-Rian-Mirg locus. Further analysis reveals that PRC2 interacts physically with Dnmt3 methyltransferases and reduces recruitment to and subsequent DNAme at the IG-DMR, thereby allowing for proper expression of the maternal Gtl2-Rian-Mirg locus. Our observations are consistent with a mechanism through which PRC2 counteracts the action of Dnmt3 methyltransferases at an imprinted locus required for full pluripotency.
Project description:Mouse embryonic stem cells (ESCs) have played a crucial role in biomedical research where they can be used to elucidate gene function through the generation of genetically modified mice. A critical requirement for the success of this technology is the ability of ESCs to contribute to viable chimaeras with germ-line transmission of the genetically modified allele. We have identified several ESC clones that cause embryonic death of chimaeras at mid to late gestation stages. These clones had a normal karyotype, were pathogen free and their in vitro differentiation potential was not compromised. Chimaeric embryos developed normally up to E13.5 but showed a significant decrease in embryo survival by E17.5 with frequent haemorrhaging. We investigated the relationship between the ESCs transcriptional and epigenomic state and their ability to contribute to viable chimaeras. RNA sequencing identified four genes (Gtl2, Rian, Mirg and Rtl1as) located in the Dlk1-Dio3 imprinted locus that were expressed at lower levels in the compromised ESC clones and this was confirmed by qRT-PCR. Bisulphite sequencing analysis showed significant hypermethylation at the Dlk1-Dio3 imprinted locus with no consistent differences in methylation patterns at other imprinted loci. Treatment of the compromised ESCs with 5-azacytidine reactivated stable expression of Gtl2 and rescued the lethal phenotype but only gave low level chimaeras.
Project description:The Dlk1-Dio3 imprinted domain functions in embryonic development but the roles of noncoding RNAs expressed from this domain remain unclear. We addressed this question by generating transgenic (TG) mice harbouring a BAC carrying IG-DMR (intergenic-differentially methylated region), Gtl2-DMR, Gtl2, Rtl1/Rtl1as, and part of Rian. High postnatal lethality (>85%) of the BAC-TG pups was observed in the maternally transmitted individuals (MAT-TG), but not following paternal transmission (PAT-TG). The DNA methylation status of IG-DMR and Gtl2-DMR in the BAC-allele was paternally imprinted similar to the genomic allele. The mRNA-Seq and miRNA-Seq analysis revealed marked expression changes in the MAT-TG, with 1,500 upregulated and 2,131 downregulated genes. The long noncoding RNAs and 12 miRNAs containing the BAC locus were markedly enhanced in the MAT-TG. We identified the 24 target genes of the overexpressed miRNAs and confirmed the downregulation in the MAT-TG. Notably, overexpression of mir770, mir493, and mir665 from Gtl2 in the MAT-TG embryos led to decreased expression of the 3 target genes, Col5a1, Pcgf2, and Clip2. Our results suggest that decreased expression of the 3 target genes concomitant with overexpression of the miRNAs within Gtl2 may be involved in the postnatal death in the MAT-TG. Because this imprinted domain is well conserved between mice and humans, the results of genetic and molecular analysis in mice hold important implications for related human disorders such as Temple syndrome.
Project description:The Polycomb Group proteins foster gene repression profiles required for proper development and unimpaired adulthood, and comprise the components of the PRC2 complex including the histone H3 lysine 27 (H3K27) methyltransferase Ezh2. How mammalian PRC2 accesses chromatin is unclear. We find that Jarid2 associates with PRC2 and stimulates its enzymatic activity in vitro. Jarid2 contains a Jumonji C domain, but is devoid of detectable histone demethylase activity. Instead, its artificial recruitment to a promoter in vivo resulted in co-recruitment of PRC2 with resultant increased levels of H3K27me2/3. Jarid2 co-localizes with Ezh2 and MTF2, a homologue of Drosophila Pcl, at endogenous genes in ES cells. Jarid2 can itself bind DNA and its recruitment in ES cells is interdependent with that of PRC2 as Jarid2 knockdown reduced PRC2 at its target promoters, and ES cells devoid of the PRC2 component EED are deficient in Jarid2 promoter access. In addition to the well-documented defects in embryonic viability upon down-regulation of Jarid2, ES cell differentiation is impaired, as is Oct4 silencing. Examination of two factors in ES cells
Project description:Polycomb Repressive Complex 2 (PRC2) plays an essential role in development by catalysing trimethylation of histone H3 lysine 27 (H3K27me3), resulting in gene repression. PRC2 consists of two sub-complexes, PRC2.1 and PRC2.2, in which the PRC2 core associates with distinct ancillary subunits such as MTF2 and JARID2, respectively. Both MTF2, present in PRC2.1, and JARID2, present in PRC2.2, play a role in core PRC2 recruitment to target genes in mouse embryonic stem cells (mESCs). However, it remains unclear how these distinct sub-complexes cooperate to establish H3K27me3 domains. Here, we combine a range of Polycomb mutant mESCs with chemical inhibition of PRC2 catalytic activity, to systematically dissect their relative contributions to PRC2 binding to target loci. We find that PRC2.1 and PRC2.2 mediate two distinct paths for recruitment, with mutually reinforced binding. Part of the cross-talk between PRC2.1 and PRC2.2 occurs via their catalytic product H3K27me3, which is bound by the PRC2 core-subunit EED, thereby mediating a positive feedback. Strikingly, removal of either JARID2 or H3K27me3 only has a minor effect on PRC2 recruitment, whereas their combined ablation largely attenuates PRC2 recruitment. This strongly suggests an unexpected redundancy between JARID2 and EED-H3K27me3-mediated recruitment of PRC2. Furthermore, we demonstrate that all core PRC2 recruitment occurs through the combined action of MTF2-mediated recruitment of PRC2.1 to DNA and PRC1-mediated recruitment of JARID2-containing PRC2.2. Both axes of binding are supported by EED-H3K27me3 positive feedback, but to a different degree. Finally, we provide evidence that PRC1 and PRC2 mutually reinforce reciprocal binding. Together, these data disentangle the interdependent and cooperative interactions between Polycomb complexes that are important to establish Polycomb repression at target sites.