Gene expression of whole hippocampus 24hr post-injury in rat
Ontology highlight
ABSTRACT: Traumatic brain injury (TBI) alters and dysregulates the expression of thousands of genes in the brain. Since some of the most common problems in TBI patients are learning and memory deficits, we are studying the effects of TBI on the hippocampus, a region of the brain which is essential for learning and memory and which is known to be particularly vulnerable to TBI. We are interested in understanding how potential neuroprotective drugs alter the TBI-induced gene expression profile. The objective of this study is to elucidate and compare the differential gene expression profiles in the hippocampus of naive, sham-control, TBI and TBI plus drug treated rats. JM6, PMI-006 and E33 are three compounds with neuroprotective, anti-inflammatory and anti-oxidative effects. Our goal is to determine if different neuroprotective compounds have similar effects on common gene targets. These genes and the cell signaling pathways linked to them would then be the target of new therapeutic strategies for TBI.
Project description:Traumatic brain injury (TBI) alters and dysregulates the expression of thousands of genes in the brain. Since some of the most common problems in TBI patients are learning and memory deficits, we are studying the effects of TBI on the hippocampus, a region of the brain which is essential for learning and memory and which is known to be particularly vulnerable to TBI. We are interested in understanding how potential neuroprotective drugs alter the TBI-induced gene expression profile. The objective of this study is to elucidate and compare the differential gene expression profiles in the hippocampus of naive, sham-control, TBI and TBI plus drug treated rats. JM6, PMI-006 and E33 are three compounds with neuroprotective, anti-inflammatory and anti-oxidative effects. Our goal is to determine if different neuroprotective compounds have similar effects on common gene targets. These genes and the cell signaling pathways linked to them would then be the target of new therapeutic strategies for TBI. Rats were prepared for fluid percussion traumatic brain injury or sham injury (naïve rats had no anesthesia and were not handled in any way and gene expression in their brains serve as baseline data) and 24 hr post-injury, hippocampi were obtained, and stored in RNA later. Total RNA was isolated, quantitified and used for Agilent microarray analysis at GenUs Biosystems. Each group of naive, sham control, TBI and TBI plus JM6, TBI plus PMI-006 and TBI plus E33 (estrogen) has three biological replicates.
Project description:Traumatic brain injury dysregulates microRNA expression in the brain. We hypothesized that injury-induced epigenetic changes contribute to neurodegeneration and learning and memory deficits after TBI. These changes may provide a mechanistic explanation for neuropsychiatric comorbidities in TBI patients. Our objective is to compare and contrast the effects of several neuroprotective drugs (JM6, PMI-006 and E33-estrogen) on the TBI-induced changes in microRNA expression in the hippocampus, a region of the brain that is critical for learning and memory. We will also study if different neuroprotective drugs have similar effects on common microRNAs which may cooperatively regulate a common set of gene targets. 3 biological samples each of Naïve, Sham control, TBI and TBI plus JM6, TI plus PMI-006, and TBI plus E33 rat hippocampi were obtained 24 hr post-sham injury or TBI, stored in RNA later and sent to GenUs Biosystems for microRNA microarray analysis.
Project description:Traumatic brain injury dysregulates microRNA expression in the brain. We hypothesized that injury-induced epigenetic changes contribute to neurodegeneration and learning and memory deficits after TBI. These changes may provide a mechanistic explanation for neuropsychiatric comorbidities in TBI patients. Our objective is to compare and contrast the effects of several neuroprotective drugs (JM6, PMI-006 and E33-estrogen) on the TBI-induced changes in microRNA expression in the hippocampus, a region of the brain that is critical for learning and memory. We will also study if different neuroprotective drugs have similar effects on common microRNAs which may cooperatively regulate a common set of gene targets.
Project description:The current lack of proven pharmacological treatment options for traumatic brain injury (TBI) patients reflects the poor translation of successful preclinical studies in clinical trials. This may be due to poor choice of therapeutic agents based on incomplete knowledge of critical elements of neuroprotection. Our goal is to expedite discovery and translation of therapeutic agents that can improve functional outcome by identifying the common molecular profile of neuroprotective drugs. Since damage to the hippocampus is associated with TBI-induced deficits in learning and memory, we analyzed of the hippocampal transcriptional profiles of TBI rats treated with two clinically used drugs metyrapone and carbenoxolone, which have been shown to improve cognitive deficits in previous studies. Despite their different structures, we found that MT and CB have similar effects on several known biological pathways. The neuroprotective effects of these drugs are associated with a distinctive molecular signature which is characterized not by changes in expression of any individual gene but by a common global effect on multiple cell signaling pathways. These data suggest that drug treatments that induce a coordinated attenuation of multiple injury-induced cell signaling networks, both deleterious and protective, have high translational potential. There were 16 samples for array analysis, two biological replicates each for control (4 and 24 hour), TBI (4 and 24 hour), TBI plus MT (4 and 24 hour) and TBI plus CB (4 and 24 hour). Each biological sample, which is a pooled RNA sample (laser captured CA3 pyramidal neurons) from the hippocampus of 3-6 rats, was hybridized to duplicate arrays so that there were 32 gene arrays in this study.
Project description:The current lack of proven pharmacological treatment options for traumatic brain injury (TBI) patients reflects the poor translation of successful preclinical studies in clinical trials. This may be due to poor choice of therapeutic agents based on incomplete knowledge of critical elements of neuroprotection. Our goal is to expedite discovery and translation of therapeutic agents that can improve functional outcome by identifying the common molecular profile of neuroprotective drugs. Since damage to the hippocampus is associated with TBI-induced deficits in learning and memory, we analyzed of the hippocampal transcriptional profiles of TBI rats treated with two clinically used drugs metyrapone and carbenoxolone, which have been shown to improve cognitive deficits in previous studies. Despite their different structures, we found that MT and CB have similar effects on several known biological pathways. The neuroprotective effects of these drugs are associated with a distinctive molecular signature which is characterized not by changes in expression of any individual gene but by a common global effect on multiple cell signaling pathways. These data suggest that drug treatments that induce a coordinated attenuation of multiple injury-induced cell signaling networks, both deleterious and protective, have high translational potential.
Project description:This project continues our acute TBI studies and initiates chronic studies -- characterizing the temporal genomic profile of the injured brain up to 12 months post-TBI. Thus, the primary objective of this proposal is to determine the long-term effects of traumatic brain injury on gene expression in the hippocampus and cortex, two brain regions known to be particularly vulnerable to TBI.
Project description:Gene expression profiling reveals neuroprotective and antiinflammatory effects of TG in SAMP8 (aging model ) mice Hippocampus thus helps in acelerating learning and memory restoration process. by suppressing proinflammatory cytokine related genes and thus accekerate neurotransmitter release in SAMP8 aging model mice hippocampus
Project description:Traumatic brain injury (TBI) causes hospitalizations and mortality worldwide with no approved neuroprotective treatments available, partly due to a poor understanding of the molecular mechanisms underlying TBI neuropathology and neuroprotection. We previously reported that the administration of low-dose methamphetamine (MA) induced significant functional/cognitive improvements following severe TBI in rats. We further demonstrated that MA mediates neuroprotection in part, via dopamine-dependent activation of the PI3K-AKT pathway. Here, we further investigated the proteomic changes within the rat cortex and hippocampus following mild TBI (TM), severe TBI (TS), or severe TBI plus MA treatment (TSm) compared to sham operated controls (n=78 in total). We quantified >7,000 unique proteins in total and identified 402 and 801 altered proteins (APs) with high confidence in cortical and hippocampal tissues, respectively. The overall profile of APs observed in TSm rats more closely resembled those seen in TM rather than TS rats. Pathway analysis suggested beneficial roles for acute signaling through IL-6, TGFβ, and IL-1β. Moreover, changes in fibrinogen levels observed in TSm rats suggested a potential role for these proteins in reducing/preventing TBI-induced coagulopathies. These data facilitate further investigations to identify specific pathways and proteins that may serve as key targets for the development of neuroprotective therapies.
Project description:Alzheimer’s disease (AD) is the leading cause of late onset dementia. However, to date, no efficient therapy for AD is available. Here, we identified a neuroprotective role of the liver contributing to brain amyloid-β (Aβ) homeostasis. The hippocampus is a crucial region for learning and memory and is one of the brain areas most affected by AD. To investigate brain mechanisms underlying the neuroprotective role of the liver in AD pathology, we performed proteomics analysis of hippocampus extracted from 5×FAD::Alb-CreERT2;Ephx2−/− mice and control littermates. After quality control, we identified 67 protein expressions that were differently regulated between the two genotypes, including nine proteins in the Kyoto Encyclopedia of Genes and Genomes pathway of AD
Project description:To investigate the hippocampus impairment of traumatic brain injury (TBI),we adopted the controlled cortical impact of C57B6/J mice as the TBI model. Hippocampal specimens were removed for sequencing 24 h after the models were established. In this study, Illumina RNA-seq technology was used to determine the gene expression profile in the hippocampus after TBI.