Project description:The cytoplasmic functions of Wiskott-Aldrich Syndrome family (WASP) proteins are well known and include roles in cytoskeleton reorganization and membrane-cytoskeletal interactions important for membrane/vesicle trafficking, morphogenesis, immune response and signal transduction. Mis-regulation of these proteins is associated with immune deficiency and metastasis. Cytoplasmic WASP proteins act as effectors of Rho family GTPases and polymerize branched actin through the Arp2/3 complex. However, recent evidence has revealed that this classically cytoplasmic protein family also functions in the nucleus. Previously, we identified Drosophila washout (wash) as a new member of the WASP family with essential cytoplasmic roles in early development. Here we show that Wash is also present in the nucleus and plays a key role in nuclear organization via its interaction with Lamin Dm0 at the nuclear envelope. Wash and Lamin Dm0 occupy similar genomic regions that overlap with transcriptionally silent chromatin including constitutive heterochromatin. Strikingly, wash mutant and knockdown nuclei exhibit the same abnormal wrinkled morphology observed in diverse laminopathies, including the Hutchinson-Gilford progeria syndrome, and consistent with disruption of the nuclear organization of several sub-nuclear structures including cajal bodies and the chromocenter in salivary glands. We also found that Wash and Lamin knockdown disrupt chromatin accessibility of repressive compartments in agreement with an observed global redistribution of repressive histone modifications. Functional genetic approaches show wash mutants exhibit similar phenotypes to lamin Dm0 mutants, suggesting they participate in similar regulatory networks. Our results reveal a novel role for Wash in modulating nuclear organization via its interaction with the nuclear envelope protein Lamin Dm0. These findings highlight the functional complexity of WASP family proteins and provide new venues to understand their molecular roles in cell biology and disease. DamID chromatin profiling demostrate that Wash binds similar regions to those bound by Lamin Dm0, in particular transcriptional silent chromatin
Project description:The cytoplasmic functions of Wiskott-Aldrich Syndrome family (WASP) proteins are well known and include roles in cytoskeleton reorganization and membrane-cytoskeletal interactions important for membrane/vesicle trafficking, morphogenesis, immune response and signal transduction. Mis-regulation of these proteins is associated with immune deficiency and metastasis. Cytoplasmic WASP proteins act as effectors of Rho family GTPases and polymerize branched actin through the Arp2/3 complex. However, recent evidence has revealed that this classically cytoplasmic protein family also functions in the nucleus. Previously, we identified Drosophila washout (wash) as a new member of the WASP family with essential cytoplasmic roles in early development. Here we show that Wash is also present in the nucleus and plays a key role in nuclear organization via its interaction with Lamin Dm0 at the nuclear envelope. Wash and Lamin Dm0 occupy similar genomic regions that overlap with transcriptionally silent chromatin including constitutive heterochromatin. Strikingly, wash mutant and knockdown nuclei exhibit the same abnormal wrinkled morphology observed in diverse laminopathies, including the Hutchinson-Gilford progeria syndrome, and consistent with disruption of the nuclear organization of several sub-nuclear structures including cajal bodies and the chromocenter in salivary glands. We also found that Wash and Lamin knockdown disrupt chromatin accessibility of repressive compartments in agreement with an observed global redistribution of repressive histone modifications. Functional genetic approaches show wash mutants exhibit similar phenotypes to lamin Dm0 mutants, suggesting they participate in similar regulatory networks. Our results reveal a novel role for Wash in modulating nuclear organization via its interaction with the nuclear envelope protein Lamin Dm0. These findings highlight the functional complexity of WASP family proteins and provide new venues to understand their molecular roles in cell biology and disease. We evaluated the effect of Wash knockdown in S2R+ cells on chromatin accessibility using an M.SssI-based approach.
Project description:The cytoplasmic functions of Wiskott-Aldrich syndrome family (WAS) proteins are well established and include roles in cytoskeleton reorganization and membrane-cytoskeletal interactions important for membrane/vesicle trafficking, morphogenesis, immune response, and signal transduction. Misregulation of these proteins is associated with immune deficiency and metastasis [1-4]. Cytoplasmic WAS proteins act as effectors of Rho family GTPases and polymerize branched actin through the Arp2/3 complex [1, 5]. Previously, we identified Drosophila washout (wash) as a new member of the WAS family with essential cytoplasmic roles in early development [6, 7]. Studies in mammalian cells and Dictyostelium suggest that WASH functions primarily in a multiprotein complex that regulates endosome shape and trafficking in an Arp2/3-dependent manner [8-11]. However, roles for classically cytoplasmic proteins in the nucleus are beginning to emerge, in particular, as participants in the regulation of gene expression [12, 13]. Here, we show that Drosophila Wash is present in the nucleus, where it plays a key role in global nuclear organization. wash mutant and knockdown nuclei disrupt subnuclear structures/organelles and exhibit the abnormal wrinkled morphology reminiscent of those observed in diverse laminopathies [14-16]. We find that nuclear Wash interacts with B-type Lamin (Lamin Dm0), and, like Lamin, Wash associates with constitutive heterochromatin. Wash knockdown increases chromatin accessibility of repressive compartments and results in a global redistribution of repressive histone modifications. Thus, our results reveal a novel role for Wash in modulating nucleus morphology and in the organization of both chromatin and non-chromatin nuclear sub-structures.