Project description:Memory T cells are primed for rapid responses to Ag; however, the molecular mechanisms responsible for priming remain incompletely defined. CpG methylation in promoters is an epigenetic modification, which regulates gene transcription. Using targeted bisulfite sequencing, we examined methylation of 2100 genes (56,000 CpGs) mapped by deep sequencing of T cell activation in human naive and memory CD4 T cells. Four hundred sixty-six CpGs (132 genes) displayed differential methylation between naive and memory cells. Twenty-one genes exhibited both differential methylation and gene expression before activation, linking promoter DNA methylation states to gene regulation; 6 of 21 genes encode proteins closely studied in T cells, whereas 15 genes represent novel targets for further study. Eighty-four genes demonstrated differential methylation between memory and naive cells that correlated to differential gene expression following activation, of which 39 exhibited reduced methylation in memory cells coupled with increased gene expression upon activation compared with naive cells. These reveal a class of primed genes more rapidly expressed in memory compared with naive cells and putatively regulated by DNA methylation. These findings define a DNA methylation signature unique to memory CD4 T cells that correlates with activation-induced gene expression.
Project description:Memory T cells are primed for rapid responses to antigen; however, the molecular mechanisms responsible for priming remain incompletely defined. CpG methylation in promoters is an epigenetic modification, which regulates gene transcription. Using targeted bisulfite sequencing, we examined methylation of 2100 genes (56,000 CpG) mapped by deep sequencing to T cell activation in human naïve and memory CD4 T cells. 466 CpGs (132 genes) displayed differential methylation between naïve and memory cells. 21 genes exhibited both differential methylation and gene expression before activation, linking promoter DNA methylation states to gene regulation; 6 genes encode proteins closely studied in T cells while 15 genes represent novel targets for further study. 39 genes exhibited reduced methylation in memory cells coupled with increased gene expression with activation compared to naïve cells, revealing specific genes more rapidly expressed in memory compared to naïve cells and potentially regulated by DNA methylation. These findings define a DNA methylation signature unique to memory CD4 T cells and correlated with activation-induced gene expression. transcriptome of primary human naïve and memory CD4 T cells at rest and 48 hours post-activation.
Project description:Memory T cells are primed for rapid responses to antigen; however, the molecular mechanisms responsible for priming remain incompletely defined. CpG methylation in promoters is an epigenetic modification, which regulates gene transcription. Using targeted bisulfite sequencing, we examined methylation of 2100 genes (56,000 CpG) mapped by deep sequencing to T cell activation in human naïve and memory CD4 T cells. 466 CpGs (132 genes) displayed differential methylation between naïve and memory cells. 21 genes exhibited both differential methylation and gene expression before activation, linking promoter DNA methylation states to gene regulation; 6 genes encode proteins closely studied in T cells while 15 genes represent novel targets for further study. 39 genes exhibited reduced methylation in memory cells coupled with increased gene expression with activation compared to naïve cells, revealing specific genes more rapidly expressed in memory compared to naïve cells and potentially regulated by DNA methylation. These findings define a DNA methylation signature unique to memory CD4 T cells and correlated with activation-induced gene expression. RNA sequencing of primary human naïve and memory CD4 T cells at rest and 48 hours post-activation.
Project description:Memory T cells are primed for rapid responses to antigen; however, the molecular mechanisms responsible for priming remain incompletely defined. CpG methylation in promoters is an epigenetic modification, which regulates gene transcription. Using targeted bisulfite sequencing, we examined methylation of 2100 genes (56,000 CpG) mapped by deep sequencing to T cell activation in human naïve and memory CD4 T cells. 466 CpGs (132 genes) displayed differential methylation between naïve and memory cells. 21 genes exhibited both differential methylation and gene expression before activation, linking promoter DNA methylation states to gene regulation; 6 genes encode proteins closely studied in T cells while 15 genes represent novel targets for further study. 39 genes exhibited reduced methylation in memory cells coupled with increased gene expression with activation compared to naïve cells, revealing specific genes more rapidly expressed in memory compared to naïve cells and potentially regulated by DNA methylation. These findings define a DNA methylation signature unique to memory CD4 T cells and correlated with activation-induced gene expression. Targeted bisulfite sequencing of primary human naïve and memory CD4 T cells at rest and 48 hours post-activation.
Project description:Memory T cells are primed for rapid responses to antigen; however, the molecular mechanisms responsible for priming remain incompletely defined. CpG methylation in promoters is an epigenetic modification, which regulates gene transcription. Using targeted bisulfite sequencing, we examined methylation of 2100 genes (56,000 CpG) mapped by deep sequencing to T cell activation in human naïve and memory CD4 T cells. 466 CpGs (132 genes) displayed differential methylation between naïve and memory cells. 21 genes exhibited both differential methylation and gene expression before activation, linking promoter DNA methylation states to gene regulation; 6 genes encode proteins closely studied in T cells while 15 genes represent novel targets for further study. 39 genes exhibited reduced methylation in memory cells coupled with increased gene expression with activation compared to naïve cells, revealing specific genes more rapidly expressed in memory compared to naïve cells and potentially regulated by DNA methylation. These findings define a DNA methylation signature unique to memory CD4 T cells and correlated with activation-induced gene expression.
Project description:Memory T cells are primed for rapid responses to antigen; however, the molecular mechanisms responsible for priming remain incompletely defined. CpG methylation in promoters is an epigenetic modification, which regulates gene transcription. Using targeted bisulfite sequencing, we examined methylation of 2100 genes (56,000 CpG) mapped by deep sequencing to T cell activation in human naïve and memory CD4 T cells. 466 CpGs (132 genes) displayed differential methylation between naïve and memory cells. 21 genes exhibited both differential methylation and gene expression before activation, linking promoter DNA methylation states to gene regulation; 6 genes encode proteins closely studied in T cells while 15 genes represent novel targets for further study. 39 genes exhibited reduced methylation in memory cells coupled with increased gene expression with activation compared to naïve cells, revealing specific genes more rapidly expressed in memory compared to naïve cells and potentially regulated by DNA methylation. These findings define a DNA methylation signature unique to memory CD4 T cells and correlated with activation-induced gene expression.
Project description:Memory T cells are primed for rapid responses to antigen; however, the molecular mechanisms responsible for priming remain incompletely defined. CpG methylation in promoters is an epigenetic modification, which regulates gene transcription. Using targeted bisulfite sequencing, we examined methylation of 2100 genes (56,000 CpG) mapped by deep sequencing to T cell activation in human naïve and memory CD4 T cells. 466 CpGs (132 genes) displayed differential methylation between naïve and memory cells. 21 genes exhibited both differential methylation and gene expression before activation, linking promoter DNA methylation states to gene regulation; 6 genes encode proteins closely studied in T cells while 15 genes represent novel targets for further study. 39 genes exhibited reduced methylation in memory cells coupled with increased gene expression with activation compared to naïve cells, revealing specific genes more rapidly expressed in memory compared to naïve cells and potentially regulated by DNA methylation. These findings define a DNA methylation signature unique to memory CD4 T cells and correlated with activation-induced gene expression.
Project description:For the past three decades, more than a thousand of genetic studies have been performed to find out the genetic variants responsible for the risk of asthma. Until now, all of the discovered single nucleotide polymorphisms have explained genetic effects less than initially expected. Thus, clarification of environmental factors has been brought up to overcome the 'missing' heritability. The most exciting solution is epigenesis because it intervenes at the junction between the genome and the environment. Epigenesis is an alteration of genetic expression without changes of DNA sequence caused by environmental factors such as nutrients, allergens, cigarette smoke, air pollutants, use of drugs and infectious agents during pre- and post-natal periods and even in adulthood. Three major forms of epigenesis are composed of DNA methylation, histone modifications, and specific microRNA. Recently, several studies have been published on epigenesis in asthma and allergy as a powerful tool for research of genetic heritability in asthma albeit epigenetic changes are at the starting point to obtain the data on specific phenotypes of asthma. In this presentation, we mainly review the potential role of DNA CpG methylation in the risk of asthma and its sub-phenotypes including nonsteroidal anti-inflammatory exacerbated respiratory diseases.