Sense-antisense transcript comparison in mouse brain and kidney
Ontology highlight
ABSTRACT: Comparison of sense (forward probes) and antisense (reverse probes on U74 v1 gene arrays) transcripts in mouse kidney and brain. Positive calls related to antisense transcripts were compared to the cognate signals on the 430 version of mouse genome arrays to obtain genes that co expressed sense and antisense transcripts. This had to be done manually because divergent probe IDs on the two chip generations. Keywords: Qualitative comparison of expression
Project description:Comparison of sense (forward probes) and antisense (reverse probes on U74 v1 gene arrays) transcripts in mouse kidney and brain. Positive calls related to antisense transcripts were compared to the cognate signals on the 430 version of mouse genome arrays to obtain genes that co expressed sense and antisense transcripts. This had to be done manually because divergent probe IDs on the two chip generations. Experiment Overall Design: The first Affymetrix U74 mouse gene chips contains reversely oriented probe sets. These probes will hybridize to natural antisense transcripts that overlap with the sense transcript in the cognate area. Affymetrix provided a mask to identify the reverse probes. Positive calls with these reverse probes will give an estimate of the antisense transcriptome in that particular tissue. Comparison of the reversely oriented probes with correctly annotated probes will reveal the expression ratio of sense and antisense transcripts.
Project description:Increasing numbers of sense–antisense transcripts (SATs), which are transcribed from the same chromosomal location but in opposite directions, have been identified in various eukaryotic species, but the biological meanings of most SATs remain unclear. To improve understanding of natural sense–antisense transcription, we performed comparative expression profiling of SATs conserved among humans and mice. Using custom oligo-arrays loaded with probes that represented SATs with both protein-coding and non-protein–coding transcripts, we showed that 33% of the 291 conserved SATs displayed identical expression patterns in the two species. Among these SATs, expressional balance inversion of sense–antisense genes was mostly observed in testis at a tissue-specific manner. Northern analyses of the individual conserved SAT loci revealed that: (1) a smeary hybridization pattern was present in mice, but not in humans, and (2) small RNAs (about 60 to 80 nt) were detected from the exon-overlapping regions of SAT loci. In addition, further analyses showed marked alteration of sense–antisense expression balance throughout spermatogenesis in testis. These results suggest that conserved SAT loci are rich in potential regulatory roles that will help us understand this new class of transcripts underlying the mammalian genome. Keywords: Expression profile of mouse and human sense-antisense transcript
Project description:We characterized the expression patterns of sense-antisense transcripts, based on available cDNA sequences, in colon (colorectal) cancer tissues and in normal tissues surrounding the cancer tissues. Although expression balances (ratios) of most of sense and antisense transcript pairs did not change between patients or between normal and cancer tissues, we found 68 sense-antisense transcripts whose expression balances were altered specifically in colon cancer tissues. We conducted DNA microarray analyses by using the same set of probes designed for 2621 sense-antisense pairs to detect transcripts expressed in colon cancer tissues. These probes comprise 2358 pairs for the detection of protein-coding transcripts only, 250 pairs for the detection of protein-coding transcripts paired with non-protein-coding transcripts, and 13 pairs for the detection of non-protein-coding transcripts only.
Project description:We characterized the expression patterns of sense-antisense transcripts, based on available cDNA sequences, in colon (colorectal) cancer tissues and in normal tissues surrounding the cancer tissues. Although expression balances (ratios) of most of sense and antisense transcript pairs did not change between patients or between normal and cancer tissues, we found 68 sense-antisense transcripts whose expression balances were altered specifically in colon cancer tissues.
Project description:The most common genetic cause of both frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) is a G4C2 repeat expansion in intron 1 of the C9orf72 gene. This repeat expansion undergoes bidirectional transcription to produce sense and antisense repeat RNA species. Both sense and antisense-derived repeat RNAs undergo repeat-associated non-AUG translation in all reading frames to generate five distinct dipeptide repeat proteins (DPRs). Importantly, toxicity has been associated with both sense and antisense repeat-derived RNA and DPRs. This suggests targeting both sense and antisense repeat RNA may provide the most effective therapeutic strategy. The RNA-targeting CRISPR-Cas13 systems offer a promising avenue for simultaneous targeting of multiple RNA transcripts, as they mature their own guide arrays, thus allowing targeting of more than one RNA species from a single construct. We show that CRISPR-Cas13d originating from Ruminococcus flavefaciens (CasRx) can successfully reduce C9orf72 sense and antisense repeat transcripts and DPRs to background levels in HEK cells overexpressing C9orf72 repeats. CRISPR-CasRx also markedly reduced the endogenous sense and antisense repeat RNAs and DPRs in three independent C9orf72 patient-derived iPSC-neuron lines, without detectable off-target effects. To determine whether CRISPR-CasRx is effective in vivo, we treated two distinct C9orf72 repeat mouse models using AAV delivery and observed a significant reduction in both sense and antisense repeat-containing transcripts. Taken together this work highlights the potential for RNA-targeting CRISPR systems as therapeutics for C9orf72 ALS/FTD.
Project description:To validate the 244K 60-mer probes using a custom-designed Agilent oligo array and assuming sense orientation of all target sequences. A total of four test arrays were designed assuming both sense and antisense orientations. A sole pooled RNA was used for testing all 4 designs. Two arrays were hybridized for each design. This series contains test results for design 2520022.
Project description:Transcription is typically divergent, initiating at closely spaced oppositely oriented core promoters to produce sense and unstable upstream antisense transcripts (uasTrx). How antisense transcription is regulated and coordinated with sense transcription is largely unknown. Here by combining acute degradation of the multi-functional transcription factor CTCF and nascent transcription measurements, we find that CTCF specifically suppresses antisense but not sense transcription at hundreds of divergent promoters, the great majority of which bear proximal CTCF binding sites. Genome editing, chromatin conformation studies and 5’ transcript mapping revealed that CTCF directly suppresses uasTrx initiation in manner independent of its chromatin architectural function. Primary transcript RNA FISH revealed co-bursting of sense and anti-sense transcripts is disfavored, suggesting CTCF-regulated competition for transcription initiation. In sum, CTCF shapes the noncoding transcriptional landscape by suppressing upstream antisense transcription.
Project description:Transcription is typically divergent, initiating at closely spaced oppositely oriented core promoters to produce sense and unstable upstream antisense transcripts (uasTrx). How antisense transcription is regulated and coordinated with sense transcription is largely unknown. Here by combining acute degradation of the multi-functional transcription factor CTCF and nascent transcription measurements, we find that CTCF specifically suppresses antisense but not sense transcription at hundreds of divergent promoters, the great majority of which bear proximal CTCF binding sites. Genome editing, chromatin conformation studies and 5’ transcript mapping revealed that CTCF directly suppresses uasTrx initiation in manner independent of its chromatin architectural function. Primary transcript RNA FISH revealed co-bursting of sense and anti-sense transcripts is disfavored, suggesting CTCF-regulated competition for transcription initiation. In sum, CTCF shapes the noncoding transcriptional landscape by suppressing upstream antisense transcription.
Project description:To validate the 244K 60-mer or 40-mer probes using a custom-designed Agilent oligo array and assuming sense orientation of all target sequences. A total of four test arrays were designed assuming both sense and antisense orientations. A sole pooled RNA was used for testing all 4 designs. Two arrays were hybridized for each design. This series contains test results for design 2520024.
Project description:Transcription profiling of sense and antisense transcripts of 10 tissues each from human, mouse, and rat. This SuperSeries is composed of the following subset Series: GSE41462: Antisense exon profiling across human, mouse, and rat GSE41464: Sense exon profiling across human, mouse, and rat We profiled the sense and antisense transcription level of 10 tissues each from human, mouse, and rat. Only Affymetrix core probesets were used. Two technical replicates per sample. Reference for protocol: Ge, X., Rubinstein, W.S., Jung, Y.C., and Wu, Q. (2008). Genome-wide analysis of antisense transcription with Affymetrix exon array. BMC Genomics 9, 27.