Project description:BackgroundPancreatic islets are not fully developed at birth and it is not clear how they are vascularised and innervated. Nerve Growth Factor (NGF) is required to guide sympathetic neurons that innervate peripheral organs and also in cardiovascular system and ovary angiogenesis. Pancreatic beta cells of a transgenic mouse that over-expressed NGF in attracts sympathetic hyper-innervation towards them. Moreover, we have previously demonstrated that adult beta cells synthesize and secrete NGF; however, we do not know how is NGF secreted during development, nor if it might be trophic for sympathetic innervation and survival in the pancreas.We analyzed sympathetic innervation and vasculature development in rat pancreatic islets at different developmental stages; foetal (F19), early postnatal (P1), weaning period (P20) and adults. We temporarily correlated these events to NGF secretion by islet cells.ResultsSympathetic fibres reached pancreatic islets in the early postnatal period, apparently following blood vessels. The maximal number of sympathetic fibres (TH immunopositive) in the periphery of the islets was observed at P20, and then fibres entered the islets and reached the core where beta cells are mainly located. The number of fibres decreased from that stage to adulthood. At all stages studied, islet cells secreted NGF and also expressed the high affinity receptor TrkA. Foetal and neonatal isolated islet cells secreted more NGF than adults. TrkA receptors were expressed at all stages in pancreatic sympathetic fibres and blood vessels. These last structures were NGF-immunoreactive only at early stages (foetal and P0).ConclusionThe results suggest that NGF signalling play an important role in the guidance of blood vessels and sympathetic fibres toward the islets during foetal and neonatal stages and could also preserve innervation at later stages of life.
Project description:Pancreatic islets of type 2 diabetes patients have altered DNA methylation, contributing to islet dysfunction and the onset of type 2 diabetes. The cause of these epigenetic alterations is largely unknown. We set out to test whether (i) islet DNA methylation would change with aging and (ii) early postnatal overnutrition would persistently alter DNA methylation. We performed genome-scale DNA methylation profiling in islets from postnatally over-nourished (suckled in a small litter) and control male mice at both postnatal day 21 and postnatal day 180. DNA methylation differences were validated using quantitative bisulfite pyrosequencing, and associations with expression were assessed by RT-PCR. We discovered that genomic regions that are hypermethylated in exocrine relative to endocrine pancreas tend to gain methylation in islets during aging (R 2 = 0.33, P < 0.0001). These methylation differences were inversely correlated with mRNA expression of genes relevant to β cell function [including Rab3b (Ras-related protein Rab-3B), Cacnb3 (voltage-dependent L-type calcium channel subunit 3), Atp2a3 (sarcoplasmic/endoplasmic reticulum calcium ATPase 3) and Ins2 (insulin 2)]. Relative to control, small litter islets showed DNA methylation differences directly after weaning and in adulthood, but few of these were present at both ages. Surprisingly, we found substantial overlap of methylated loci caused by aging and small litter feeding, suggesting that the age-associated gain of DNA methylation happened much earlier in small litter islets than control islets. Our results provide the novel insights that aging-associated DNA methylation increases reflect an epigenetic drift toward the exocrine pancreas epigenome, and that early postnatal overnutrition may accelerate this process.
Project description:The vascular system is characterized by a high degree of plasticity. In particular, functional and structural remodeling of the arterial system takes place during early postnatal development. However, the mechanisms providing such alterations in the rapidly growing organisms are poorly understood, especially for the peripheral vasculature. To explore this, we performed mRNA- and miRNA microarray analysis on muscular type saphenous arteries of young (10-12 days) and adult (2-3 months) rats. Thirty-eight significant pathways (such as oxidative phosphorylation, MAPK signaling, metabolism, cell cycle, DNA replication and focal adhesion) were obtained on differentially regulated genes during postnatal development. Many differentially regulated genes were determined as target- and miRNA-hubs. We also found 92 miRNAs differentially expressed in arteries of young and adult rats. Several significantly regulated pathways were found on these regulated miRNAs. Interestingly, these biological cascades also contain those significantly enriched pathways that were previously identified based on the differently expressed genes. Our data indicate that the expression of many genes involved in the regulation of pathways that are relevant for different functions in arteries may be under the control of miRNAs and these miRNAs regulate the functional, and structural remodeling occurring in the vascular system during early postnatal development.
Project description:comparison of mRNA expression in the islets of 3- and 12-month old male Wistar rats Aging is a risk factor for a majority of metabolic diseases including type 2 diabetes. During aging pancreatic beta-cell function decreases leading to impaired insulin secretion and proliferation and to an increase in apoptosis. Impairment of pancreatic beta cell functions and survival has been linked to gene expression changes. The aim of our study was to obtain a global expression profile of microRNAs and mRNAs of pancreatic islets of 3 and 12 month old male Wistar rats in order to identify the changes occurring during aging.
Project description:In this study, we achieved integrated transcriptomic and proteomic profiles of GK islets in a time-course fashion at different stages of T2D. Subsequent bioinformatics analysis revealed the chronological order of T2D-related molecular events during the deterioration of pancreatic islets. Our large quantitative dataset provide a valuable resource to obtain a comprehensive picture of the mechanisms responsible for islet dysfunction and to identify potential interventions to prevent beta-cell failure in human T2D.