Project description:Genome-wide mapping of transcriptional regulatory elements is an essential tool for understanding the molecular events orchestrating self-renewal, commitment and differentiation of stem cells. We combined high-throughput identification of transcription start sites with genome-wide profiling of histones modifications to map active promoters and enhancers in embryonic stem cells (ESCs) induced to neuroepithelial-like stem cells (NESCs). Our analysis showed that most promoters are active in both cell types while approximately half of the enhancers are cell-specific and account for most of the epigenetic changes occurring during neural induction, and most likely for the modulation of the promoters to generate cell-specific gene expression programs. Interestingly, the majority of the promoters activated or up-regulated during neural induction have a "bivalent" histone modification signature in ESCs, suggesting that developmentally-regulated promoters are already poised for transcription in ESCs, which are apparently pre-committed to neuroectodermal differentiation. Overall, our study provides a collection of differentially used enhancers, promoters, transcription starts sites, protein-coding and non-coding RNAs in human ESCs and ESC-derived NESCs, and a broad, genome-wide description of promoter and enhancer usage and of gene expression programs characterizing the transition from a pluripotent to a neural-restricted cell fate.
Project description:Genome-wide mapping of transcriptional regulatory elements are essential tools for the understanding of the molecular events orchestrating self-renewal, commitment and differentiation of stem cells. We combined high-throughput identification of nascent, Pol-II-transcribed RNAs by Cap Analysis of Gene Expression (CAGE-Seq) with genome-wide profiling of histones modifications by chromatin immunoprecipitation (ChIP-seq) to map active promoters and enhancers in a model of human neural commitment, represented by embryonic stem cells (ESCs) induced to differentiate into self-renewing neuroepithelial-like stem cells (NESC). We integrated CAGE-seq, ChIP-seq and gene expression profiles to discover shared or cell-specific regulatory elements, transcription start sites and transcripts associated to the transition from pluripotent to neural-restricted stem cell. Our analysis showed that >90% of the promoters are in common between the two cell types, while approximately half of the enhancers are cell-specific and account for most of the epigenetic changes occurring during neural induction, and most likely for the modulation of the promoters to generate cell-specific gene expression programs. Interestingly, the majority of the promoters activated or up-regulated during neural induction have a “bivalent” histone modification signature in ESCs, suggesting that developmentally-regulated promoters are already poised for transcription in ESCs, which are apparently pre-committed to neuroectodermal differentiation. Overall, our study provide a collection of differentially used enhancers, promoters, transcription starts sites, protein-coding and non-coding RNAs in human ESCs and ESC-derived NESCs, and a broad, genome-wide description of promoter and enhancer usage and gene expression programs occurring in the transition from a pluripotent to a neural-restricted cell fate. Investiagtion of promoters usage changes during ESCs neural induction ESCs and NESCs promoter usage profiling by CAGE-seq
Project description:Genome-wide mapping of transcriptional regulatory elements are essential tools for the understanding of the molecular events orchestrating self-renewal, commitment and differentiation of stem cells. We combined high-throughput identification of nascent, Pol-II-transcribed RNAs by Cap Analysis of Gene Expression (CAGE-Seq) with genome-wide profiling of histones modifications by chromatin immunoprecipitation (ChIP-seq) to map active promoters and enhancers in a model of human neural commitment, represented by embryonic stem cells (ESCs) induced to differentiate into self-renewing neuroepithelial-like stem cells (NESC). We integrated CAGE-seq, ChIP-seq and gene expression profiles to discover shared or cell-specific regulatory elements, transcription start sites and transcripts associated to the transition from pluripotent to neural-restricted stem cell. Our analysis showed that >90% of the promoters are in common between the two cell types, while approximately half of the enhancers are cell-specific and account for most of the epigenetic changes occurring during neural induction, and most likely for the modulation of the promoters to generate cell-specific gene expression programs. Interestingly, the majority of the promoters activated or up-regulated during neural induction have a “bivalent” histone modification signature in ESCs, suggesting that developmentally-regulated promoters are already poised for transcription in ESCs, which are apparently pre-committed to neuroectodermal differentiation. Overall, our study provide a collection of differentially used enhancers, promoters, transcription starts sites, protein-coding and non-coding RNAs in human ESCs and ESC-derived NESCs, and a broad, genome-wide description of promoter and enhancer usage and gene expression programs occurring in the transition from a pluripotent to a neural-restricted cell fate. Genome-wide mapping of H3K4me1 and H3K4me3 in NESCs ChIP-seq for H3K4me1 and H3K4me3 in NESCs
Project description:Genome-wide mapping of transcriptional regulatory elements are essential tools for the understanding of the molecular events orchestrating self-renewal, commitment and differentiation of stem cells. We combined high-throughput identification of nascent, Pol-II-transcribed RNAs by Cap Analysis of Gene Expression (CAGE-Seq) with genome-wide profiling of histones modifications by chromatin immunoprecipitation (ChIP-seq) to map active promoters and enhancers in a model of human neural commitment, represented by embryonic stem cells (ESCs) induced to differentiate into self-renewing neuroepithelial-like stem cells (NESC). We integrated CAGE-seq, ChIP-seq and gene expression profiles to discover shared or cell-specific regulatory elements, transcription start sites and transcripts associated to the transition from pluripotent to neural-restricted stem cell. Our analysis showed that >90% of the promoters are in common between the two cell types, while approximately half of the enhancers are cell-specific and account for most of the epigenetic changes occurring during neural induction, and most likely for the modulation of the promoters to generate cell-specific gene expression programs. Interestingly, the majority of the promoters activated or up-regulated during neural induction have a “bivalent” histone modification signature in ESCs, suggesting that developmentally-regulated promoters are already poised for transcription in ESCs, which are apparently pre-committed to neuroectodermal differentiation. Overall, our study provide a collection of differentially used enhancers, promoters, transcription starts sites, protein-coding and non-coding RNAs in human ESCs and ESC-derived NESCs, and a broad, genome-wide description of promoter and enhancer usage and gene expression programs occurring in the transition from a pluripotent to a neural-restricted cell fate. Investiagtion of promoters usage changes during ESCs neural induction
Project description:Genome-wide mapping of transcriptional regulatory elements are essential tools for the understanding of the molecular events orchestrating self-renewal, commitment and differentiation of stem cells. We combined high-throughput identification of nascent, Pol-II-transcribed RNAs by Cap Analysis of Gene Expression (CAGE-Seq) with genome-wide profiling of histones modifications by chromatin immunoprecipitation (ChIP-seq) to map active promoters and enhancers in a model of human neural commitment, represented by embryonic stem cells (ESCs) induced to differentiate into self-renewing neuroepithelial-like stem cells (NESC). We integrated CAGE-seq, ChIP-seq and gene expression profiles to discover shared or cell-specific regulatory elements, transcription start sites and transcripts associated to the transition from pluripotent to neural-restricted stem cell. Our analysis showed that >90% of the promoters are in common between the two cell types, while approximately half of the enhancers are cell-specific and account for most of the epigenetic changes occurring during neural induction, and most likely for the modulation of the promoters to generate cell-specific gene expression programs. Interestingly, the majority of the promoters activated or up-regulated during neural induction have a “bivalent” histone modification signature in ESCs, suggesting that developmentally-regulated promoters are already poised for transcription in ESCs, which are apparently pre-committed to neuroectodermal differentiation. Overall, our study provide a collection of differentially used enhancers, promoters, transcription starts sites, protein-coding and non-coding RNAs in human ESCs and ESC-derived NESCs, and a broad, genome-wide description of promoter and enhancer usage and gene expression programs occurring in the transition from a pluripotent to a neural-restricted cell fate. Genome-wide mapping of H3K4me1 and H3K4me3 in NESCs
Project description:Genome-wide mapping of transcriptional regulatory elements are essential tools for the understanding of the molecular events orchestrating self-renewal, commitment and differentiation of stem cells. We combined high-throughput identification of nascent, Pol-II-transcribed RNAs by Cap Analysis of Gene Expression (CAGE-Seq) with genome-wide profiling of histones modifications by chromatin immunoprecipitation (ChIP-seq) to map active promoters and enhancers in a model of human neural commitment, represented by embryonic stem cells (ESCs) induced to differentiate into self-renewing neuroepithelial-like stem cells (NESC). We integrated CAGE-seq, ChIP-seq and gene expression profiles to discover shared or cell-specific regulatory elements, transcription start sites and transcripts associated to the transition from pluripotent to neural-restricted stem cell. Our analysis showed that >90% of the promoters are in common between the two cell types, while approximately half of the enhancers are cell-specific and account for most of the epigenetic changes occurring during neural induction, and most likely for the modulation of the promoters to generate cell-specific gene expression programs. Interestingly, the majority of the promoters activated or up-regulated during neural induction have a “bivalent” histone modification signature in ESCs, suggesting that developmentally-regulated promoters are already poised for transcription in ESCs, which are apparently pre-committed to neuroectodermal differentiation. Overall, our study provide a collection of differentially used enhancers, promoters, transcription starts sites, protein-coding and non-coding RNAs in human ESCs and ESC-derived NESCs, and a broad, genome-wide description of promoter and enhancer usage and gene expression programs occurring in the transition from a pluripotent to a neural-restricted cell fate. ESCs (H9 NIH code WA09, ISL1 Ds-Red) were kindly provided by the group of K.R. Chien. Neural differentiation was induced by the method of embryoid bodies following a published protocol [1]. Briefly, 4-days embryoid bodies were transferred to polyornithine-coated dishes and propagated in N2-supplemented DMEM/F12 (Invitrogen). Total RNA was extracted from 1-2x10^6 cells from three different cultures of ESCs and NESCs, transcribed into biotinylatedcRNA and hybridized onto GeneChip® HG-U133 Plus 2.0 Arrays (Affymetrix) according to the protocol supplied by the manufacturer (Affymetrix, Santa Clara, CA).
Project description:Genome-wide mapping of transcriptional regulatory elements are essential tools for the understanding of the molecular events orchestrating self-renewal, commitment and differentiation of stem cells. We combined high-throughput identification of nascent, Pol-II-transcribed RNAs by Cap Analysis of Gene Expression (CAGE-Seq) with genome-wide profiling of histones modifications by chromatin immunoprecipitation (ChIP-seq) to map active promoters and enhancers in a model of human neural commitment, represented by embryonic stem cells (ESCs) induced to differentiate into self-renewing neuroepithelial-like stem cells (NESC). We integrated CAGE-seq, ChIP-seq and gene expression profiles to discover shared or cell-specific regulatory elements, transcription start sites and transcripts associated to the transition from pluripotent to neural-restricted stem cell. Our analysis showed that >90% of the promoters are in common between the two cell types, while approximately half of the enhancers are cell-specific and account for most of the epigenetic changes occurring during neural induction, and most likely for the modulation of the promoters to generate cell-specific gene expression programs. Interestingly, the majority of the promoters activated or up-regulated during neural induction have a “bivalent” histone modification signature in ESCs, suggesting that developmentally-regulated promoters are already poised for transcription in ESCs, which are apparently pre-committed to neuroectodermal differentiation. Overall, our study provide a collection of differentially used enhancers, promoters, transcription starts sites, protein-coding and non-coding RNAs in human ESCs and ESC-derived NESCs, and a broad, genome-wide description of promoter and enhancer usage and gene expression programs occurring in the transition from a pluripotent to a neural-restricted cell fate.
Project description:Enhancers are distal regulatory elements that can activate tissue-specific gene expression and are abundant throughout mammalian genomes. Although substantial progress has been made toward genome-wide annotation of mammalian enhancers, their temporal activity patterns and global contributions in the context of developmental in vivo processes remain poorly explored. Here we used epigenomic profiling for H3K27ac, a mark of active enhancers, coupled to transgenic mouse assays to examine the genome-wide utilization of enhancers in three different mouse tissues across seven developmental stages. The majority of the ∼90,000 enhancers identified exhibited tightly temporally restricted predicted activity windows and were associated with stage-specific biological functions and regulatory pathways in individual tissues. Comparative genomic analysis revealed that evolutionary conservation of enhancers decreases following midgestation across all tissues examined. The dynamic enhancer activities uncovered in this study illuminate rapid and pervasive temporal in vivo changes in enhancer usage that underlie processes central to development and disease.
Project description:Here we used epigenomic profiling for H3K27ac, a mark of active enhancers to examine the genome-wide in vivo utilization of enhancers in three different mouse tissues across seven developmental stages, ranging from mid-gestation through adulthood. The majority of the ~90,000 enhancers identified exhibited tightly temporally restricted activity windows and were associated with stage-specific biological functions and regulatory pathways in individual tissues. Comparative genomic analysis revealed that evolutionary conservation of enhancers decreases following mid-gestation across all tissues examined. The dynamic enhancer activities uncovered in this study illuminate rapid and pervasive temporal in vivo changes in enhancer usage underlying developmental processes and demonstrate the value of time-course chromatin profiling of relevant tissues across development. Examination of H3K27ac in mouse forebrain, heart and liver tissues collected across developmental stages.
Project description:Epigenetic modification as an intrinsic fine-tune program cooperates with key transcription factors to regulate the cell fate determination. The histone acetylation participating in neural differentiation of pluripotent stem cells is expected but not well studied. Here, using acetylated histone H3 ChIP-sequencing (ChIP-seq), we demonstrate that the histone H3 acetylation level is gradually increased on the neural gene loci while decreased on the neural-inhibitory gene loci during mouse embryonic stem cell (mESC) neural differentiation. We further show that histone deacetylase 1 (HDAC1) is essential for neural commitment by targeting Nodal signaling. Thus, our study reveals a mechanism by which the epigenetic modification of histone acetylation/deacetylation interacts with extracellular signaling in mESC neural fate determination. Data were deposited in Gene Expression Omnibus (GEO) datasets under reference number GSE66025.