Genome-wide profiling of PARP1 reveals an interplay with gene regulatory regions and DNA methylation
Ontology highlight
ABSTRACT: To address the global impact of PARP-1 on DNA methylation, we treated cells with PJ34 (PARylation inhibitor) and isolated genomic DNA from vehicle and PJ34 treated cells. This DNA was bisulfite treated and hybridized to the Illumina infinium Methylation 450 Beadchip. We next used these RNA-seq data sets (control, PARP-1 KD and PARylation inhibited) to assess whether PARP plays a role in DNA methylation by assessing differential methylation patterns. PARP1 mediates methylation patterns.
Project description:To address the global impact of PARP-1 on DNA methylation, we treated cells with PJ34 (PARylation inhibitor) and isolated genomic DNA from vehicle and PJ34 treated cells. This DNA was bisulfite treated and hybridized to the Illumina infinium Methylation 450 Beadchip. We next used these RNA-seq data sets (control, PARP-1 KD and PARylation inhibited) to assess whether PARP plays a role in DNA methylation by assessing differential methylation patterns. PARP1 mediates methylation patterns. DNA from vehicle and PJ34 (PARylation inhibited) cells. 750ng of geneomic DNA was bisulfite converted and used for the Illumia infinium HD methylation assay.
Project description:Poly ADP-ribose (PAR) polymerases (PARPs) play fundamental roles in multiple DNA damage recognition and repair pathways. Persistent nuclear PARP activation causes cellular NAD+ depletion and exacerbates cellular aging. However, very little is known about mitochondrial PARP (mtPARP) and PARylation. The existence of mtPARP is controversial, and the biological roles for mtPARP induced mitochondrial PARylation are unclear. Here, we demonstrate the presence of PARP1 and PARylation in purified mitochondria. The addition of the PARP1 substrate NAD+ to isolated mitochondria induces PARylation which is suppressed by PARP inhibitor olaparib treatment. Mitochondrial PARylation was also evaluated by enzymatic labeling of terminal ADP-ribose (ELTA) labeling. To further confirm the presence of mtPARP1, we evaluated mitochondrial nucleoid PARylation by ADP ribose-chromatin affinity purification (ADPr-ChAP) . We observed that NAD+ stimulated PARylation and TFAM occupancy on the mtDNA regulatory region D-loop, inducing mtDNA transcription. These findings suggest that PARP1 is integrally involved in mitochondrial PARylation and NAD+ dependent mtPARP1 activity contributes to mtDNA transcription regulation.
Project description:PARP1 inhibitors (PARPi) are known to kill tumor cells via two mechanisms (i.e., PARP1 catalytic inhibition vs. PARP1 trapping). The relative contribution of these two pathways in mediating the cytotoxicity of PARPi, however, is incompletely understood. Here we designed a series of small molecule PARP degraders. Treatment with one such compound iRucaparib (1) results in highly efficient and specific PARP1 degradation. iRucaparib blocks the enzymatic activity of PARP1 in vitro, and PARP1-mediated PARylation signaling in intact cells. This strategy mimics PARP1 genetic depletion, which enables the pharmacological decoupling of PARP1 inhibition from PARP1 trapping. Finally, by depleting PARP1, iRucaparib protects muscle cells and primary cardiomyocytes from DNA damage-induced energy crisis and cell death. In summary, these compounds represent “non-trapping” PARP1 degraders that block both the catalytic activity and scaffolding effects of PARP1, providing an ideal approach for the amelioration of the various pathological conditions caused by PARP1 hyperactivation.
Project description:PARP1 inhibitors (PARPi) are known to kill tumor cells via two mechanisms (i.e., PARP1 catalytic inhibition vs. PARP1 trapping). The relative contribution of these two pathways in mediating the cytotoxicity of PARPi, however, is incompletely understood. Here we designed a series of small molecule PARP degraders. Treatment with one such compound iRucaparib (1) results in highly efficient and specific PARP1 degradation. iRucaparib blocks the enzymatic activity of PARP1 in vitro, and PARP1-mediated PARylation signaling in intact cells. This strategy mimics PARP1 genetic depletion, which enables the pharmacological decoupling of PARP1 inhibition from PARP1 trapping. Finally, by depleting PARP1, iRucaparib protects muscle cells and primary cardiomyocytes from DNA damage-induced energy crisis and cell death. In summary, these compounds represent “non-trapping” PARP1 degraders that block both the catalytic activity and scaffolding effects of PARP1, providing an ideal approach for the amelioration of the various pathological conditions caused by PARP1 hyperactivation.
Project description:PARP1 inhibitors (PARPi) are known to kill tumor cells via two mechanisms (i.e., PARP1 catalytic inhibition vs. PARP1 trapping). The relative contribution of these two pathways in mediating the cytotoxicity of PARPi, however, is incompletely understood. Here we designed a series of small molecule PARP degraders. Treatment with one such compound iRucaparib (1) results in highly efficient and specific PARP1 degradation. iRucaparib blocks the enzymatic activity of PARP1 in vitro, and PARP1-mediated PARylation signaling in intact cells. This strategy mimics PARP1 genetic depletion, which enables the pharmacological decoupling of PARP1 inhibition from PARP1 trapping. Finally, by depleting PARP1, iRucaparib protects muscle cells and primary cardiomyocytes from DNA damage-induced energy crisis and cell death. In summary, these compounds represent “non-trapping” PARP1 degraders that block both the catalytic activity and scaffolding effects of PARP1, providing an ideal approach for the amelioration of the various pathological conditions caused by PARP1 hyperactivation.
Project description:PARP1 inhibitors (PARPi) are known to kill tumor cells via two mechanisms (i.e., PARP1 catalytic inhibition vs. PARP1 trapping). The relative contribution of these two pathways in mediating the cytotoxicity of PARPi, however, is incompletely understood. Here we designed a series of small molecule PARP degraders. Treatment with one such compound iRucaparib (1) results in highly efficient and specific PARP1 degradation. iRucaparib blocks the enzymatic activity of PARP1 in vitro, and PARP1-mediated PARylation signaling in intact cells. This strategy mimics PARP1 genetic depletion, which enables the pharmacological decoupling of PARP1 inhibition from PARP1 trapping. Finally, by depleting PARP1, iRucaparib protects muscle cells and primary cardiomyocytes from DNA damage-induced energy crisis and cell death. In summary, these compounds represent “non-trapping” PARP1 degraders that block both the catalytic activity and scaffolding effects of PARP1, providing an ideal approach for the amelioration of the various pathological conditions caused by PARP1 hyperactivation.
Project description:PARP1 inhibitors (PARPi) are known to kill tumor cells via two mechanisms (i.e., PARP1 catalytic inhibition vs. PARP1 trapping). The relative contribution of these two pathways in mediating the cytotoxicity of PARPi, however, is incompletely understood. Here we designed a series of small molecule PARP degraders. Treatment with one such compound iRucaparib (1) results in highly efficient and specific PARP1 degradation. iRucaparib blocks the enzymatic activity of PARP1 in vitro, and PARP1-mediated PARylation signaling in intact cells. This strategy mimics PARP1 genetic depletion, which enables the pharmacological decoupling of PARP1 inhibition from PARP1 trapping. Finally, by depleting PARP1, iRucaparib protects muscle cells and primary cardiomyocytes from DNA damage-induced energy crisis and cell death. In summary, these compounds represent “non-trapping” PARP1 degraders that block both the catalytic activity and scaffolding effects of PARP1, providing an ideal approach for the amelioration of the various pathological conditions caused by PARP1 hyperactivation.
Project description:DNA-protein crosslinks (DPCs) are toxic lesions that inhibit DNA related processes. Post-translational modifications (PTMs), including SUMOylation and ubiquitylation, play a central role in DPC resolution, but whether other PTMs are also involved remains elusive. Here, we identify a DPC repair pathway orchestrated by poly-ADP-ribosylation (PARylation). Using Xenopus egg extracts, we show that DPCs on single-stranded DNA gaps can be targeted for degradation via a replication-independent mechanism. During this process, DPCs are initially PARylated by PARP1 and subsequently ubiquitylated and degraded by the proteasome. Notably, PARP1-mediated DPC resolution is required for resolving topoisomerase 1-DNA cleavage complexes (TOP1ccs) induced by camptothecin. Using the Flp-nick system, we further reveal that in the absence of PARP1 activity, the TOP1cc-like lesion persists and induces replisome disassembly when encountered by a DNA replication fork. In summary, our work uncovers a PARP1-mediated DPC repair pathway that may underlie the synergistic toxicity between TOP1 poisons and PARP inhibitors.
Project description:The function of poly(ADP-ribosyl) polymerase 1 (PARP1) in myelination and remyelination of the central nervous system (CNS) remains enigmatic. Here we report that PARP1 is an intrinsic driver for oligodendroglial development and myelination. Genetic PARP1 depletion impairs the differentiation of oligodendrocyte progenitor cells (OPCs) into oligodendrocytes and impedes CNS myelination. Mechanistically, PARP1-mediated PARylation activity is not only necessary but also sufficient for OPC differentiation. At the molecular level, we identify the RNA-binding protein Myef2 as a PARylated target which controls OPC differentiation through PARylation-modulated de-repression of myelin protein expression. Furthermore, PARP1’s enzymatic activity is necessary for oligodendrocyte and myelin regeneration after demyelination. Together, our findings suggest that PARP1-mediated PARylation activity may be a potential therapeutic target for promoting OPC differentiation and remyelination in neurological disorders characterized by arrested OPC differentiation and remyelination failure such as multiple sclerosis.
Project description:DNA repair dysregulation is a key driver of cancer development. Understanding the molecular mechanisms underlying DNA repair pathways and their dysregulation in cancer cells is crucial for cancer development and therapies. Here, we report that enhancer of zeste homolog 2 (EZH2) directly methylates poly (ADP-ribose) polymerase-1 (PARP-1), an essential enzyme involved in DNA repair, at lysine 607 and regulates its activity. Functionally, EZH2-catalyzed methylation represses PARP1 catalytic activity, inhibits the recruitment of X-ray repair cross-complementing group-1 (XRCC1) recruitment to DNA lesions and hence impairs DNA damage repair. Meanwhile, EZH2-mediated methylation regulates PARP1 transcriptional and oncogenic activity, at least in part, through impairing PARP1-E2F1 interaction and E2F1 transcription factor activity. Collectively, our findings uncover a novel insight of EZH2 functions in DNA damage repair and cancer progression, which provides a new rationale for combinational targeting EZH2 and PARP1 in cancer.