Transcriptomics

Dataset Information

0

Activity-Induced DNA Breaks Govern the Expression of Neuronal Early-Response Genes


ABSTRACT: Neuronal activity causes the rapid expression of immediate early genes that are crucial for experience driven changes to synapses, learning, and memory. Here, using both molecular and genome-wide next generation sequencing methods, we report that neuronal activity stimulation triggers the formation of DNA double strand breaks (DSBs) in the promoters of a subset of early-response genes, including Fos, Npas4, and Egr1. Generation of targeted DNA DSBs within Fos and Npas4 promoters is sufficient to induce their expression even in the absence of an external stimulus. Activity-dependent DSB formation is likely mediated by the type II topoisomerase, Topoisomerase IIb (Topo IIb), and knockdown of Topo IIb attenuates both DSB formation and early response gene expression following neuronal stimulation. Our results suggest that DSB formation is a physiological event that rapidly resolves topological constraints to early-response gene expression in neurons.

ORGANISM(S): Mus musculus

PROVIDER: GSE61887 | GEO | 2015/06/04

SECONDARY ACCESSION(S): PRJNA262622

REPOSITORIES: GEO

Dataset's files

Source:
Action DRS
Other
Items per page:
1 - 1 of 1

Similar Datasets

2015-06-04 | E-GEOD-61887 | biostudies-arrayexpress
2010-05-15 | E-GEOD-13145 | biostudies-arrayexpress
2008-11-27 | GSE13145 | GEO
2022-09-15 | GSE161818 | GEO
2022-09-13 | PXD034446 | Pride
2024-05-22 | GSE241309 | GEO
2024-04-02 | GSE262706 | GEO
2023-10-18 | GSE245327 | GEO
2014-11-17 | E-GEOD-59836 | biostudies-arrayexpress
2024-05-22 | GSE241305 | GEO