Microarray analysis of the effect of Cipro on wt and lexA mutant S. aureus cells
Ontology highlight
ABSTRACT: Staphylococcus aureus is a leading cause of human disease and can be difficult to treat due to both multi-drug resistance and the organism’s remarkable ability to persist in the host, which is thought to result from several complex regulatory networks that modify transcription in response to environmental stress. In this study, we characterize the global transcriptional response of S. aureus strain 8325 to the antibiotic ciprofloxacin. We find that ciprofloxacin induces prophage mobilization and also significant alterations in metabolism, most notably an upregulation of the tricarboxylic acid cycle. In addition, ciprofloxacin induces the SOS response, which based on a comparison of the wild-type and lexA mutant strains, we show includes the de-repression of sixteen genes. In addition to RecA, LexA, and the hypothetical proteins encoded by SACOL0436, SACOL1375, SACOL1986 and SACOL1999, the S. aureus SOS genes encode proteins involved in DNA metabolism and induced mutation. Finally, we show that rendering LexA uncleavable significantly sensitizes the pathogen to ciprofloxacin therapy in vivo. These observations suggest that the SOS response may play a critical role in the pathogenicity of S. aureus. Keywords: time course
Project description:The SOS response is a conserved pathway that is activated under certain stress conditions and is regulated by the repressor LexA and the activator RecA. The food-borne pathogen Listeria monocytogenes contains RecA and LexA homologs, but their roles in Listeria have not been established. In this study, we identified the SOS regulon in L. monocytogenes by comparing the transcription profiles of the wild-type strain and the ΔrecA mutant strain after exposure to the DNA damaging agent mitomycinC (MMC). The SOS response is an inducible pathway involved in DNA repair, restart of stalled replication forks, and in induction of genetic variation in stressed and stationary phase cells. It is regulated by LexA and RecA. LexA is an autoregulatory repressor which binds to a consensus sequence in the promoter region of the SOS response genes, thereby repressing transcription. A consensus LexA binding motif for L. monocytogenes has not been identified thus far. Generally, the SOS response is induced under circumstances in which single stranded DNA accumulates in the cell. This results in activation of RecA, which in turn stimulates cleavage of LexA, and ultimately in the induction of the SOS response. Keywords: stress response, loop design, SOS response, mitomycin c, listeria monocytogenes, RecA, LexA
Project description:Objectives The antistaphylococcal pyrrolobenzodiazepine dimer ELB-21 forms multiple adducts with duplex DNA through covalent interactions with appropriately spaced guanine residues; it is now known to form interstrand and intrastrand adducts with oligonucleotide sequences of variable length. We determined the DNA sequence preferences of ELB-21 in relation to its capacity to exert a bactericidal effect by damaging DNA. Methods Formation of adducts by ELB-21 and 12- to 14-mer DNA duplexes was investigated using ion-pair reversed phase liquid chromatography and mass spectrometry. Drug-induced changes in gene expression were measured in prophage-free Staphylococcus aureus RN4220 by microarray analysis. Results ELB-21 preferentially formed intrastrand adducts with guanines separated by three nucleotide base pairs. Interstrand and intrastrand adducts were formed with duplexes both longer and shorter than the preferred target sequences. ELB-21 elicited rapid bactericidal effects against prophage-carrying and prophage-free S. aureus strains; cell lysis occurred following activation and release of resident prophages. Killing appeared to be due to irreparable damage to bacterial DNA and susceptibility to ELB-21 was governed by the capacity of staphylococci to repair DNA lesions through induction of the SOS DNA damage response mediated by the RecA-LexA pathway. Conclusions The data support the contention that ELB-21 arrests DNA replication, eliciting formation of ssDNA-RecA filaments that inactivate LexA, the SOS repressor, and phage repressors such as Cl, resulting in activation of the DNA damage response and de-repression of resident prophages. Above the MIC threshold, DNA repair is ineffective. Data is also available from <ahref=http://bugs.sgul.ac.uk/E-BUGS-115 target=_blank>BuG@Sbase</a>
Project description:The SOS response is a conserved pathway that is activated under certain stress conditions and is regulated by the repressor LexA and the activator RecA. The food-borne pathogen Listeria monocytogenes contains RecA and LexA homologs, but their roles in Listeria have not been established. In this study, we identified the SOS regulon in L. monocytogenes by comparing the transcription profiles of the wild-type strain and the ÎrecA mutant strain after exposure to the DNA damaging agent mitomycinC (MMC). The SOS response is an inducible pathway involved in DNA repair, restart of stalled replication forks, and in induction of genetic variation in stressed and stationary phase cells. It is regulated by LexA and RecA. LexA is an autoregulatory repressor which binds to a consensus sequence in the promoter region of the SOS response genes, thereby repressing transcription. A consensus LexA binding motif for L. monocytogenes has not been identified thus far. Generally, the SOS response is induced under circumstances in which single stranded DNA accumulates in the cell. This results in activation of RecA, which in turn stimulates cleavage of LexA, and ultimately in the induction of the SOS response. Keywords: stress response, loop design, SOS response, mitomycin c, listeria monocytogenes, RecA, LexA Triple loop design of 3 independent experiments (series A, B, and C) using Wt strain and recA mutant (activator of the SOS response). Sampling was done before (t=0) and 1 hour after (t=60) exposure to mitomycin C (MMC) for both the wild-type strain and the recA mutant strain. One series therefore contains 4 samples and the complete experiments consists of 12 samples. Each of the 3 series was designed in a loop (wt, t=0 =>wt, t=60 => recA, t=60 => recA, t=0 => wt, t=0). These 3 loops were connected using series B as the central loop. Series B was connected to series A as follows: wt, t=0 (B) => recA, t=0 (A) and wt, t=60 (B) => recA, t=60 (A). Series B was connected to series C as follows: recA, t=0 (B) => wt, t=0 (C) and recA, t=60 (B) => wt, t=60 (C).
Project description:Pseudomonas aeruginosa infections can be virtually impossible to eradicate and the evolution of resistance during antibiotic therapy is a significant concern. In this study, we use DNA microarrays to characterize the global transcriptional response of P. aeruginosa to clinical-like doses of the antibiotic ciprofloxacin and also to determine the component that is regulated by LexA cleavage and the SOS response. We find that genes involved in virtually every facet of metabolism are down-regulated in response to ciprofloxacin. The LexA-controlled SOS regulon identified by microarray analysis includes only fifteen genes, but does include several genes that encode proteins involved in recombination and replication, including two inducible polymerases known to play a role in mutation and the evolution of antibiotic resistance in other organisms. The data suggests that the inhibition of LexA cleavage during therapy might help combat this pathogen by decreasing its ability to adapt and evolve resistance. Keywords: Time course of response of P. aeruginosa to the antibiotic ciprofloxacin
Project description:Ribonucleotides are frequently incorporated into DNA and can be used as a marker of DNA replication enzymology. To investigate on a genome-wide scale, how E. coli pol V accesses undamaged chromosomal DNA during the SOS response, we mapped the location of ribonucleotides incorporated by steric gate variants of pol V across the entire E. coli genome. To do so, we used strains that are deficient in ribonucleotide excision repair (DrnhB), constitutively express all SOS-regulated genes [lexA(Def)] and constitutively “activated” RecA* (recA730). The strains also harbor two steric gate variants of E. coli pol V (Y11A or F10L), or a homolog of pol V, (pol VR391-Y13A). Ribonucleotides are frequently incorporated by the pol V-Y11A and pol VR391-Y13A variants, with a preference to the lagging strand. In contrast, the pol V-F10L variant incorporates less ribonucleotides and no strand preference was observed. Sharp transitions in strand specificity are observed at replication origin (oriC), while a gradient is observed at the termination region. To activate RecA* in a recA+ strain, we treated the strains with ciprofloxacin and genome-wide mapped the location of the incorporated ribonucleotides. Again, the polV-Y11A steric gate variant, exhibited a lagging strand preference. Our data is consistent with a specific role for pol V in lagging strand DNA synthesis across the entire E. coli genome during the SOS response.
Project description:Pseudomonas aeruginosa infections can be virtually impossible to eradicate and the evolution of resistance during antibiotic therapy is a significant concern. In this study, we use DNA microarrays to characterize the global transcriptional response of P. aeruginosa to clinical-like doses of the antibiotic ciprofloxacin and also to determine the component that is regulated by LexA cleavage and the SOS response. We find that genes involved in virtually every facet of metabolism are down-regulated in response to ciprofloxacin. The LexA-controlled SOS regulon identified by microarray analysis includes only fifteen genes, but does include several genes that encode proteins involved in recombination and replication, including two inducible polymerases known to play a role in mutation and the evolution of antibiotic resistance in other organisms. The data suggests that the inhibition of LexA cleavage during therapy might help combat this pathogen by decreasing its ability to adapt and evolve resistance. Experiment Overall Design: Sample preparation and data analysis. For each strain (PAO1 and the lexA uninducible mutant), 5 clones were inoculated in LB and grown 18 h. Cultures were diluted 1:500 and grown to mid-log phase (OD600 ~0.4-0.5) at which point ciprofloxacin was added to a final concentration of 1 μg/ml. At 0, 30 and 120 minutes following ciprofloxacin addition, appropriate volumes from each of the 5 cultures per strain were pooled and added to 2 volumes of RNAprotect reagent (Qiagen); cell pellets were stored at 4 ºC until RNA extraction. Total RNA was extracted using the RNeasy Mini kit (Qiagen) at the end of the sample collection period. This procedure was repeated three independent times to generate three samples each just prior to and 120 minutes post ciprofloxacin addition.
Project description:Shimoni2009 - Escherichia Coli SOS
Simple model, involving only the basic components of the circuit, sufficient to explain the peaks in the promoter activities of recA and lexA.
This model is described in the article:
Stochastic analysis of the SOS response in Escherichia coli.
Shimoni Y, Altuvia S, Margalit H, Biham O
PloS one. 2009; 4(5):e5363
Abstract:
BACKGROUND: DNA damage in Escherichia coli evokes a response mechanism called the SOS response. The genetic circuit of this mechanism includes the genes recA and lexA, which regulate each other via a mixed feedback loop involving transcriptional regulation and protein-protein interaction. Under normal conditions, recA is transcriptionally repressed by LexA, which also functions as an auto-repressor. In presence of DNA damage, RecA proteins recognize stalled replication forks and participate in the DNA repair process. Under these conditions, RecA marks LexA for fast degradation. Generally, such mixed feedback loops are known to exhibit either bi-stability or a single steady state. However, when the dynamics of the SOS system following DNA damage was recently studied in single cells, ordered peaks were observed in the promoter activity of both genes (Friedman et al., 2005, PLoS Biol. 3(7):e238). This surprising phenomenon was masked in previous studies of cell populations. Previous attempts to explain these results harnessed additional genes to the system and deployed complex deterministic mathematical models that were only partially successful in explaining the results.
PRINCIPAL FINDINGS: Here we apply stochastic methods, which are better suited for dynamic simulations of single cells. We show that a simple model, involving only the basic components of the circuit, is sufficient to explain the peaks in the promoter activities of recA and lexA. Notably, deterministic simulations of the same model do not produce peaks in the promoter activities.
SIGNIFICANCE: We conclude that the double negative mixed feedback loop with auto-repression accounts for the experimentally observed peaks in the promoter activities. In addition to explaining the experimental results, this result shows that including additional regulations in a mixed feedback loop may dramatically change the dynamic functionality of this regulatory module. Furthermore, our results suggests that stochastic fluctuations strongly affect the qualitative behavior of important regulatory modules even under biologically relevant conditions, thus emphasizing the importance of stochastic analysis of regulatory circuits.
This model is hosted on BioModels Database and identified by: MODEL2937159804.
To cite BioModels Database, please use: BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models.
To the extent possible under law, all copyright and related or neighbouring rights to this encoded model have been dedicated to the public domain worldwide. Please refer to CC0 Public Domain Dedication for more information.
Project description:Repair of DNA damage is essential for genome integrity. DNA damage elicits a DNA damage response (DDR) that includes error-free and error-prone, i.e. mutagenic, repair. The SOS response is a widely conserved system in bacteria that regulates the DDR and depends on the recombinase RecA and the transcriptional repressor LexA. However, RecA/LexA-independent DDRs have been identified in several bacterial species. Here, using a whole-cell, label-free quantitative proteomics approach, we map the proteomic response in Myxococcus xanthus to mitomycin C treatment and the lack of LexA. In doing so, we confirm a LexA-independent DDR in M. xanthus. Using a candidate approach, we identify DdiA, a transcriptional regulator of the XRE family, and demonstrate that it regulates a subset of the LexA-independent DDR genes. Further, we show that ddiA expression is activated heterogeneously in a subpopulation of cells in the absence of exogenous genotoxic stress and is reversibly activated population-wide in response to such stress. We show that DdiA, indirectly or directly, activates the expression of dnaE2, which encodes the DnaE2 error-prone DNA polymerase, and inhibits the expression of recX, which encodes RecX, a negative regulator of RecA. Accordingly, the ΔddiA mutant has a lower mutation frequency than the wild-type but also a fitness defect, suggesting that DdiA mediates a trade-off between fitness and mutagenesis. We speculate that the DdiA-dependent response is tailored to counter replication stress, thereby preventing the induction of the complete RecA/LexA-dependent DDR in the absence of exogenous genotoxic stress.
Project description:DNA microarray technology was used to survey changes in gene expression in P. fluorescens after mitomycin C (MMC) treatment. As expected, genes associated with the SOS response were upregulated. These include genes coding the recombination involved protein RecA, DNA repair protein RecN, excinuclease ABC subunit A UvrA, and the LexA repressor protein. The expression profile was similar to that which had been shown for E. coli after MMC treatment. Interestingly, expression of 33 bacteriophage-like genes was upregulated two hours after MMC treatment. Those genes are clustered in the chromosome. This result suggests that MMC may induce a prophage resident in the P. fluorescens genome. However, no phage particles were detected in a preparation of P. fluorescens strain DC454 that had been treated with MMC using transmission electron microscopy, and the same preparation failed to produce phage plaques on lawns of any of 10 different Pseudomonas strains tested, suggesting that the 33 bacteriophage-like gene cluster represents a defective prophage. Keywords: time course, stress response
Project description:Horizontally acquired genetic elements (HGEs) plays a major for determination of virulence, antimicrobial resistance, adaptation and evolution in pathogenic bacteria. Conserved integrative mobile genetic elements (MGEs) of Vibrio cholerae contribute in the disease development, antimicrobial resistance and metabolic functions. To understand the dynamics of integrative MGEs and cross talk between MGEs and core genome, engineered genome of V. cholerae was monitored in the presence and absence of horizontally acquired genetic elements. Deletion of more than 250 revealed that CTX contributes to the essentiality of SOS response master regulator LexA in V. cholerae. Also, he core genome encoded RecA helps CTX to bypass the host immunity and replicate in the host cell in the presence of similar prophage in the host chromosome. Finally, our multiomics data reveal importance of MGEs in modulating the level of cellular proteome and metabolome in V. cholerae. This study for the first time engineered the genome of V. cholerae strains to eliminate all the GIs, ICE and prophages from their genome and revealed new interactions between core and acquired genomes. The engineered strain could be a potential candidate for understanding evolution of cholera pathogen and development of therapeutics.