An RNA-seq transcriptome analysis of floral buds of an interspecific Brassica hybrid between B. carinata and B. napus
Ontology highlight
ABSTRACT: Using the Illumina HiSeq 2000 platform, 39,598; 32,403and 42,208 genes were identified in flower buds of B. carinata cv.W29, B. napus cv. Zhongshuang 11 and their hybrids, respectively. The differentially expressed genes (DEGs) were significantly enriched in pollen wall assembly, pollen exine formation, pollen development, pollen tube growth, pollination, gene transcription, macromolecule methylation and translation, which might be associated with impaired fertility in the F1 hybrid. These results will shed light on the mechanisms underlying the low fertility of the interspecific hybrids and expand our knowledge of interspecific hybridization.
ORGANISM(S): Brassica napus Brassica carinata x Brassica napus Brassica carinata
Project description:Purpose:Comparative cellular and transcriptome analyses was applied to characterize gene expression during male gametophytic development in Brassica carinata. Methods: floral buds (contain two developmental progress,1.1-1.6 mm and 1.8-6.5 long floral buds) were collected, then Separated male organs were kept in liquid nitrogen immediately until use. Total RNA was extracted using the TRIzol reagent (Invitrogen, Waltham, MA, USA). DNase (Promega, USA) was used to remove potential DNA contamination. For the quantitative real-time polymerase chain reaction (qRT-PCR) analysis Results: In this study, Up-regulated expression of DNA methylation probably affected pollen abortion in synthetic allohaploid B. carinata,and Down-regulated expression of cytokinin may affect pollen division and growth in synthetic allohaploid B. carinata Conclusions: Genes were shown male-preferred implies the dynamic changes of DNA methylation during the development of male gametes. The DEGs, related to CK signaling pathway and BR synthesis pathway were highly enriched in developmental male gametes, suggesting that CK played pivotal roles in male gamete development.
Project description:In this work, we evaluated the genetic stabilization process, of the intra- (Saccharomyces cerevisiae) and interspecific (S. cerevisiae x Saccharomyces kudriavzevii) hybrids obtained by different non-GMO techniques, under fermentative conditions. Large-scale transitions in genome size, detected by measuring total DNA content, and genome reorganizations in both nuclear and mitochondrial DNA, evidenced by changes in molecular markers, were observed during the experiments. Interspecific hybrids seem to need fewer generations to reach genetic stability than intraspecific hybrids. The largest number of molecular patterns among the derived stable colonies was observed for intraspecific hybrids, particularly for those obtained by rare-mating in which the total amount of initial DNA was larger. Finally, a representative intraspecific stable hybrid underwent a normal industrial process to obtain active dry yeast production as an important point at which inducing changes in genome composition was possible. No changes in hybrid genetic composition after this procedure were confirmed by comparative genome hybridization. According to our results, fermentation steps 2 and 5 –comprising between 30 and 50 generations- suffice to obtain genetically stable interspecific and intraspecific hybrids, respectively. This work aimed to develop and validate a fast genetic stabilization method for newly generated Saccharomyces hybrids under selective enological conditions. A comparison of the whole stabilization process in intra- and interspecific hybrids showing different ploidy levels, as a result of using different hybridization methodologies, was also made.
Project description:In this work, we evaluated the genetic stabilization process, of the intra- (Saccharomyces cerevisiae) and interspecific (S. cerevisiae x Saccharomyces kudriavzevii) hybrids obtained by different non-GMO techniques, under fermentative conditions. Large-scale transitions in genome size, detected by measuring total DNA content, and genome reorganizations in both nuclear and mitochondrial DNA, evidenced by changes in molecular markers, were observed during the experiments. Interspecific hybrids seem to need fewer generations to reach genetic stability than intraspecific hybrids. The largest number of molecular patterns among the derived stable colonies was observed for intraspecific hybrids, particularly for those obtained by rare-mating in which the total amount of initial DNA was larger. Finally, a representative intraspecific stable hybrid underwent a normal industrial process to obtain active dry yeast production as an important point at which inducing changes in genome composition was possible. No changes in hybrid genetic composition after this procedure were confirmed by comparative genome hybridization. According to our results, fermentation steps 2 and 5 –comprising between 30 and 50 generations- suffice to obtain genetically stable interspecific and intraspecific hybrids, respectively. This work aimed to develop and validate a fast genetic stabilization method for newly generated Saccharomyces hybrids under selective enological conditions. A comparison of the whole stabilization process in intra- and interspecific hybrids showing different ploidy levels, as a result of using different hybridization methodologies, was also made. A stable hybrid strain was compared with itself before and after ADY (active dry yeast) production in order to evaluate the genetic stability of this strain.
Project description:Interspecific hybridization often induces epigenetic remodeling that leads to transposon activation, gene expression changes, and loss of imprinting. These genomic changes can be deleterious and lead to postzygotic hybrid incompatibility. In Arabidopsis, loss of genomic imprinting of PHERES1 and presumed failure of Polycomb Repressive Complex is partially responsible for seed inviability observed in A. thaliana X A. arenosa interspecific hybrids. We used this species pair to further analyze the relationship between parent-specific gene expression and postzygotic hybrid incompatibility using two A. thaliana ecotypes, Col-0 and C24, with differential seed survival. We found that maternal imprinting was perturbed for PHERES1, HDG3, and six other genes in both A. thaliana hybrids and paternal imprinting was lost for MEDEA as observed previously. Three classes of retroelements; Sadhu, Athila, and Copia, maintained proper repression patterns suggesting some regulatory mechanisms are not disrupted early in development. We propose that early genome remodeling and loss of imprinting of seed development genes induces lethality in both compatible and incompatible hybrids.
Project description:Here, we produced a set of interspecific F1 triploid hybrid plants between Oryza sativa, ssp. japonica (2nâ=â2xâ=â24, genome AA) and the tetraploid form of O. punctata (2nâ=â4xâ=â48, genome, BBCC), and conducted RNA-seq transcriptome profiling of the hybrids and their exact parental plants. We analyzed both homeolog expression bias and overall gene expression level difference in the hybrids relative to the in silico âhybridsâ (parental mixtures). We found that approximately 16% (2,541) of the 16,112 expressed genes in leaf tissue of the F1 hybrids showed nonadditive expression, which were specifically enriched in photosynthesis-related pathways. Interestingly, changes in the maternal homeolog expression, including non-stochastic silencing, were the major causes for altered homeolog expression partitioning in the F1 hybrids. Our findings have provided further insights into the transcriptome response to interspecific hybridization and heterosis.
Project description:Interspecific hybrids in Arabidopsis result in seed abortion that causes reproductive barrier. To investigate the allelic expression pattern at transcriptome level during early seed abortion stage, we performed RNA-seq analysis in F1 interspecific hybrids with three different ecotypes in A. thaliana as maternal and A. arenosa as paternal and identified MEGs and PEGs. Interestingly, PEGs showed distinct expression pattern in several aspects, compared to MEGs: PEGs showed ecotype-specific expression pattern, suggesting a role for PEGs in ecotype-dependent seed lethality. 35% of previously known MEGs in non-lethal hybrids were found as PEGs in our lethal interspecific hybrids, implying the presence of abnormal paternal allelic upregulation. The correlation test between the upregulation of PEGs and previously reported paternal-excess interploidy cross (2X6) which exhibited seed abortion showed that dosage disruption by abnormal paternal upregulation is correlated with seed abortion. Moreover, epigenetic disruption appears to cause some of abnormal upregulation of paternal alleles in PEGs via mis-regulation of MEA-mediated PcG2 and MET1-mediated DNA methylation. The results provide clue on the critical role of PEGs in seed abortion via disruption of dosage balance and epigenetic regulation.
Project description:Interspecific hybridization often induces epigenetic remodeling that leads to transposon activation, gene expression changes, and loss of imprinting. These genomic changes can be deleterious and lead to postzygotic hybrid incompatibility. In Arabidopsis, loss of genomic imprinting of PHERES1 and presumed failure of Polycomb Repressive Complex is partially responsible for seed inviability observed in A. thaliana X A. arenosa interspecific hybrids. We used this species pair to further analyze the relationship between parent-specific gene expression and postzygotic hybrid incompatibility using two A. thaliana ecotypes, Col-0 and C24, with differential seed survival. We found that maternal imprinting was perturbed for PHERES1, HDG3, and six other genes in both A. thaliana hybrids and paternal imprinting was lost for MEDEA as observed previously. Three classes of retroelements; Sadhu, Athila, and Copia, maintained proper repression patterns suggesting some regulatory mechanisms are not disrupted early in development. We propose that early genome remodeling and loss of imprinting of seed development genes induces lethality in both compatible and incompatible hybrids. We examined gene expression in A. thaliana intraspecific hybrid crosses to determine normal patterns of maternal and paternal expression early in seed development.
Project description:Four hybrid yeast strains isolated from a variety of industrial substrates were hybridized to an array-CGH platform containing probes to query the whole genomes of seven different Saccharomyces species. For most of the strains we found evidence of multiple interspecific hybridization events and multiple introgressed regions. The strains queried were GSY205 (isolated from a cider fermentation), GSY505 (a contaminant from a lager beer fermentation), GSY2232 (a commercial wine yeast strain), and GSY312 (a commercial lager beer strain). Additionally, 3 different rare viable spores derived from laboratory-created interspecific S. cerevisiae-S. bayanus (aka S. uvarum) hybrids were queried, before and after evolution in chemostats, via S. cerevisiae-S. bayanus microarrays.