Expression data from skeletal muscle of young, old and old calorie restricted mice
Ontology highlight
ABSTRACT: We investigated age-related changes in the transcriptional profile of skeletal muscle in 5 month old (young) and 25 month old (old) C57BL/6NHsd mice using high density oligonucleotide arrays (22,690 transcripts probed). We identified 712 transcripts that are differentially expressed in young (5 month old) and old (25-month old) mouse skeletal muscle. Caloric restriction (CR) completely or partially reversed 87% of the changes in expression. Examination of individual genes revealed a transcriptional profile indicative of increased p53 activity in the older muscle. To determine whether the increase in p53 activity is associated with transcriptional activation of apoptotic targets, we performed RT-PCR on four well known mediators of p53-induced apoptosis: puma, noxa, tnfrsf10b and bok. Expression levels for these proapoptotic genes increased significantly with age (P<0.05), while CR significantly lowered expression levels for these genes as compared to control fed old mice (P<0.05). Age-related induction of p53-related genes was observed in multiple tissues, but was not observed in SOD2+/- and GPX4+/- mice, suggesting that oxidative stress does not mediate the observed age-related increase in expression. Western blot analysis confirmed that protein levels for both p21 and GADD45a, two established transcriptional targets of p53, were higher in the older muscle tissue. These observations support a role for p53-mediated apoptotic activity in mammalian aging. Keywords: aging, calorie restriction, muscle, p53
ORGANISM(S): Mus musculus
PROVIDER: GSE6323 | GEO | 2006/12/01
SECONDARY ACCESSION(S): PRJNA100587
REPOSITORIES: GEO
ACCESS DATA