Distinct roles of Brd2 and Brd4 in potentiating the transcriptional program for Th17 cell differentiation
Ontology highlight
ABSTRACT: We analyzed the ChIP-seq data of Brd2 and Brd4 in Th17 cells. We find that Brd2 and Brd4 have distinct genome-wide deposition in Th17 cells, further experiments reveal tht Brd2 faciliates TF-complex formation in enhancers, enhancer-promoter interaction while Brd4 enhances transcriptional elongation.
Project description:We analyzed the genome wide distributions of Brd2 and Brd4 in Th17 cells. We find that Brd2 and Brd4 have distinct genome-wide localization in Th17 cells, further experiments reveal tht Brd2 faciliates TF-complex formation in enhancers, enhancer-promoter interaction while Brd4 enhances transcriptional elongation.
Project description:The BET proteins are major transcriptional regulators and have emerged as new drug targets, but their functional distinction has remained elusive. In this study, we report that the BET family members Brd2 and Brd4 exert distinct genomic functions at genes whose transcription they co-regulate during mouse T helper 17 (Th17) cell differentiation. Brd2 is associated with the chromatin insulator CTCF and the cohesin complex to support cis-regulatory enhancer assembly for gene transcriptional activation. In this context, Brd2 binds the transcription factor Stat3 in an acetylation-sensitive manner and facilitates Stat3 recruitment to active enhancers occupied with transcription factors Irf4 and Batf. In parallel, Brd4 temporally controls RNA polymerase II (Pol II) processivity during transcription elongation through cyclin T1 and Cdk9 recruitment and Pol II Ser2 phosphorylation. Collectively, our study uncovers both separate and interdependent Brd2 and Brd4 functions in potentiating the genetic program required for Th17 cell development and adaptive immunity.
Project description:Natural killer cells are innate lymphocytes that play a pivotal role in the immune surveillance and elimination of transformed or virally infected cells. Using a combined chemico-genetic approach, we have identified that BET bromodomains BRD2 and BRD4 are central regulators of NK cell responses. We show that both BRD2 and BRD4 play a key regulatory function in controlling NK cell specific inflammatory responses. However, knockdown of BRD2 but not BRD4 impairs NK cell cytolytic response, highlighting a redundant role for BRD4 in regulating NK cell killing. We further show that the prototypic monovalent BET inhibitor impairs in vitro NK cell mediated killing of cancer target cells, while the bivalent BET bromodomain AZD5153 does not. We ascribe these differences to the preferential affinity of JQ1(+) to BRD2, while AZD5153 has a higher affinity for BRD4. Our work suggests that inhibiting BET bromodomains may be an effective therapeutic strategy for controlling inflammatory function. Given that BRD2 but not BRD4 inhibition can impair NK cell mediated killing, our findings also have clinical significance in light of the ongoing clinical application of BET bromodomains in oncology.
Project description:Mutations in NIPBL are the major cause of Cornelia de Lange Syndrome (CdLS). NIPBL is the cohesin loading factor and has recently been associated with the BET (Bromodomains and Extra Terminal (ET) domain) proteins BRD2 and BRD4. Related to this, a CdLS-like phenotype has been described associated to BRD4 mutations. To understand the relationship between NIPBL and BET proteins, we have performed RNA-Seq expression analysis following depletion of the different proteins in mouse P19 teratocarcinoma cells. Results indicate that genes regulated by NIPBL largely overlap with those regulated by BRD4 but not with those regulated by BRD2.
Project description:IL-17-producing T helper (TH17) cells have been selected through evolution for their ability to control fungal and bacterial infections. It is also firmly established that their aberrant generation and activation results in autoimmune conditions. Using a characterized potent and selective small molecule inhibitor, we show that the bromodomain and extra-terminal domain (BET) family of chromatin adaptors plays fundamental and selective roles in human and murine TH17 differentiation from naM-CM-/ve CD4+ T cells, as well as in the activation of previously differentiated TH17 cells. We provide evidence that BET controls TH17 differentiation in a bromodomain-dependent manner through a mechanism that includes the direct regulation of multiple effector TH17-associated cytokines, including IL17, IL21 and GMCSF. We also demonstrate that BET family members Brd2 and Brd4 associate with the Il17 locus in TH17 cells, and that this association requires bromodomains. We recapitulate the critical role of BET bromodomains in TH17 differentiation in vivo and show that therapeutic dosing of the BET inhibitor is efficacious in mouse models of autoimmunity. Our results identify the BET family of proteins as a fundamental link between chromatin signaling and TH17 biology, and support the notion of BET inhibition as a point of therapeutic intervention in autoimmune conditions. 4 samples were analyzed: two conditions in duplicate. Naive T cells were placed in conditions leading to TH17 differentiation, with and without BET inhibitor. RNA was collected at 48 hours.
Project description:Displacement of Bromodomain and Extra-Terminal (BET) proteins from chromatin has promise for cancer and inflammatory disease treatments, but roles of BET proteins in metabolic disease remain unexplored. Small molecule BET inhibitors, such as JQ1, block BET protein binding to acetylated lysines, but lack selectivity within the BET family (Brd2, Brd3, Brd4, Brdt), making it difficult to disentangle contributions of each family member to transcriptional and cellular outcomes. Here, we demonstrate multiple improvements in pancreatic β-cells upon BET inhibition with JQ1 or BET-specific siRNAs. JQ1 (50-400 nM) increases insulin secretion from INS-1 cells in a concentration dependent manner. JQ1 increases insulin content in INS-1 cells, accounting for increased secretion, in both rat and human islets. Higher concentrations of JQ1 decrease intracellular triglyceride stores in INS-1 cells, a result of increased fatty acid oxidation. Specific inhibition of both Brd2 and Brd4 enhances insulin transcription, leading to increased insulin content. Inhibition of Brd2 alone increases fatty acid oxidation. Overlapping yet discrete roles for individual BET proteins in metabolic regulation suggest new isoform-selective BET inhibitors may be useful to treat insulin resistant/diabetic patients. Results imply that cancer and diseases of chronic inflammation or disordered metabolism are related through shared chromatin regulatory mechanisms.
Project description:Understanding the precise functions and relationship of BRD2 with other bromodomain and extraterminal motif (BET) proteins is central for the application of BET-specific and pan inhibitors. Here, we used acute protein degradation and quantitative genomic and proteomic approaches to investigate the primary functions of BRD2 in transcription. We report that BRD2 is required for TAF3-mediated Pol II initiation at low levels of H3K4me3-modified promoters and Pol II elongation by suppressing R-loops. Single and double depletion revealed that BRD2 and BRD3, but not BRD4, redundantly and independently function in Pol II transcription at different promoters and cooperatively occupy enhancers. Interestingly, we found that depletion of BRD2 affects the expression of different genes during differentiation processes, priming with promoter regulation in ES cells. Therefore, our results suggest complex interconnections between BRD2 and BRD3 at promoters to fine-tune Pol II initiation and elongation for control of cell state.
Project description:IL-17-producing T helper (TH17) cells have been selected through evolution for their ability to control fungal and bacterial infections. It is also firmly established that their aberrant generation and activation results in autoimmune conditions. Using a characterized potent and selective small molecule inhibitor, we show that the bromodomain and extra-terminal domain (BET) family of chromatin adaptors plays fundamental and selective roles in human and murine TH17 differentiation from naïve CD4+ T cells, as well as in the activation of previously differentiated TH17 cells. We provide evidence that BET controls TH17 differentiation in a bromodomain-dependent manner through a mechanism that includes the direct regulation of multiple effector TH17-associated cytokines, including IL17, IL21 and GMCSF. We also demonstrate that BET family members Brd2 and Brd4 associate with the Il17 locus in TH17 cells, and that this association requires bromodomains. We recapitulate the critical role of BET bromodomains in TH17 differentiation in vivo and show that therapeutic dosing of the BET inhibitor is efficacious in mouse models of autoimmunity. Our results identify the BET family of proteins as a fundamental link between chromatin signaling and TH17 biology, and support the notion of BET inhibition as a point of therapeutic intervention in autoimmune conditions.
Project description:The bromodomain and extra-terminal domain (BET) proteins are known as drug targets in diseases. However, the BET protein association profile to histone H4 hyperacetylation is not well understood and BET inhibition effects have been studied more in the context of BRD4 than BRD2. Here, by integrating chromatin and transcriptome analyses of ChIP-seq and Cap Analysis Gene Expression (CAGE) datasets, we show that di-acetylation at K5 and K8 of histone H4 (H4K5acK8ac) co-localizes with H3K27ac and BRD2 in the majority of active enhancers and promoters, where BRD2 has a stronger association with H4K5acK8ac than H3K27ac. Interestingly, although BET inhibition by JQ1 led to complete reduction of BRD2 binding, only local changes of H4K5acK8ac were observed and surprisingly a remarkable number of BRD2-bound genes including MYC and its target genes were upregulated. Using BRD2-enriched sites and transcriptional activity analysis, we identified candidate transcription factors (TFs) potentially involved in the JQ1 response in BRD2-dependent and independent manner.