Next Generation Sequencing Comparison of C57BL/6J and BC027072 -/- Eye Transcriptomes
Ontology highlight
ABSTRACT: We report the single base pair analysis of the ocular transcriptome from wild type and BC027072 knockout animals. Comparison was analyzed to understand gene expression changes in a mouse model for early onset retinal degeneration which phenocopies a human form of autosomal recessive retinitis pigmentosa
Project description:We report the single base pair analysis of the ocular transcriptome from wild type and BC027072 knockout animals. Comparison was analyzed to understand gene expression changes in a mouse model for early onset retinal degeneration which phenocopies a human form of autosomal recessive retinitis pigmentosa Eye mRNA profiles were generated from 3 week-old C57BL/6J and BC027072 -/- in triplicate and sequenced using the Illumina HiSeq 2500
Project description:To explore the mechanism associated with retinal degeneration and adeno-associated virus (AAV)-mediated gene therapy in rd10 mouse, a model of autosomal recessive retinitis pigmentosa (arRP) containing mutation of β subunit of the rod cGMP phosphodiesterase 6 (PDE6).
Project description:Recessive retinitis pigmentosa (RP) is often caused by nonsense mutations that lead to low mRNA levels as a result of nonsense-mediated decay. Some RP genes are expressed at detectable levels in leukocytes as well as in the retina. We designed a microarray-based method to find recessive RP genes based on low lymphoblast mRNA expression levels Keywords: Recessive mutations; mRNA expression; nonsense mediated-decay; retinitis pigmentosa; lymphocyte; Affymetrix genechip Human Genome U133Plus2.0.
2008-07-14 | GSE12086 | GEO
Project description:SNRNP200mutations cause autosomal dominant retinitis pigmentosa
Project description:Rhodopsin P23H mutation is the most comment mutation causing autosomal dominant retinitis pigmentosa in the USA. The goal of this project is to compare the transcriptome changes of the Rhodopsin P23H knock-in mouse model of adRP to the wildtype control at different ages. The transcriptomic profile will help us understand the molecular events along the pathophysiology of reititis pigmentosa in this mouse model. We include the RNA seq data of Rhodopsin P23H heterozygous mouse retinas at 1, 3 and 6 months of age to compare with age-matched wildtype mouse retinas. N=3 and each sample is from an individual animal.
Project description:Retinitis pigmentosa (RP) is an inherited eye disease that causes progressive vision loss.To investigate the biological processes and molecular changes that occur in different cell types in the retinas in rd1 mice, a mouse model of retinitis pigmentosa, we performed single-cell RNA-seq to examine the transcriptomes of various retinal cells.