Genome-wide DNA-binding profile of the Vibrio cholerae histone-like nucleoid structuring protein (H-NS)
Ontology highlight
ABSTRACT: The cholera disease bacterium V. cholerae, can adopt planktonic or biofilm lifestyles depending on the intracellular concentration of the second messenger cyclic diguanylic acid (c-di-GMP). Biofilm formation protects Vibrios from stressful conditions and facilitates disease transmission by enhancing infectivity. The histone-like nucleoid structuring protein (H-NS) is a global regulator of genes associated with pathogenicity and responses to environmental stresses. H-NS represses the transcription of genes vpsT, vpsA and vpsL, which are required for the biosynthesis of the biofilm exopolysacchide matrix. Here we demonstrate that the c-di-GMP-binding protein VpsT disrupts H-NS nucleoprotein complexes at the vpsA and vpsL promoters and that this effect is enhanced by c-di-GMP. We used ChIP coupled with Next Generation Sequencing (ChIP-Seq) and transcriptome analysis (RNA-Seq) to identify additional loci repressed by H-NS affecting biofilm formation. This study showed that H-NS directly represses the transcription of genes encoding proteins present in the biofilm matrix such as the rbmA-F cluster, hemolysin and chitinase. Similar to vpsA and vpsL, the promoter region of vpsU, rbmA and rbmF exhibited overlapping H-NS and VpsT binding motifs. Deletion of vpsT increased H-NS occupancy at the vpsU, vpsA, vpsL, rbmA and rbmF promoters. Conversely, artificially increasing the c-di-GMP pool diminished H-NS occupancy at the above promoters. Deletion of vpsT did not affect H-NS occupancy at its own promoter. However, deletion of genes encoding the regulators AphA and VpsR significantly increased H-NS occupancy at the vpsT promoter. In sum, our study shows that c-di-GMP enhances biofilm formation by acting through VpsT to activate an H-NS anti-repression cascade.
ORGANISM(S): Vibrio cholerae
PROVIDER: GSE64249 | GEO | 2015/05/13
SECONDARY ACCESSION(S): PRJNA270531
REPOSITORIES: GEO
ACCESS DATA