Dissection of transcriptional and cis-regulatory control of differentiation in human pancreatic cancer [ChIP-seq]
Ontology highlight
ABSTRACT: The histological grade of carcinomas describes the ability of tumor cells to organize differentiated epithelial structures and has prognostic impact. Molecular control of differentiation in normal and cancer cells relies on lineage-determining transcription factors (TFs) that activate the repertoire of cis-regulatory elements controlling cell type-specific transcriptional outputs. TF recruitment to cognate genomic DNA binding sites results in the deposition of histone marks characteristic of enhancers and other cis-regulatory elements. Here we integrated transcriptomics and genome-wide analysis of chromatin marks in human pancreatic ductal adenocarcinoma (PDAC) cells of different grade to identify first, and then experimentally validate the sequence-specific TFs controlling grade-specific gene expression. We identified a core set of TFs with a pervasive binding to the enhancer repertoire characteristic of differentiated PDACs and controlling different modules of the epithelial gene expression program. Defining the regulatory networks that control the maintenance of epithelial differentiation of PDAC cells will help determine the molecular basis of PDAC heterogeneity and progression.
ORGANISM(S): Homo sapiens
PROVIDER: GSE64557 | GEO | 2016/01/18
SECONDARY ACCESSION(S): PRJNA271302
REPOSITORIES: GEO
ACCESS DATA