Project description:Gene expression profile following transfection with miR-503, miR-103, or miR-494 mature duplex Examination of mRNA levels in HeLa cells following transfection of miR-503, miR-103, or miR-494 mature duplex, control siRNA against GFP, or mock transfection (lipofectamine 2000 alone)
Project description:We constructed a genome wide target profile of hsa-miR-503, hsa-miR-103, and hsa-miR-494 by sequencing RNA isolated from Ago2 immunoprecipitations and total RNA samples following transfection of the respective miRNA in mature duplex form
Project description:We constructed a genome wide target profile of hsa-miR-503, hsa-miR-103, and hsa-miR-494 by sequencing RNA isolated from Ago2 immunoprecipitations and total RNA samples following transfection of the respective miRNA in mature duplex form Examination of mRNA levels in HeLa cells and Ago2 immunoprecipitations from HeLa cells following miR-503, miR-103, or miR-494 mature duplex or control siRNA transfection
Project description:BackgroundProstate cancer (PC) is a common urinary system malignancy, and advanced PC patients had a poor prognosis due to recurrence or distant metastasis. Therefore, it's imperative to reveal more details in tumorigenesis and prognosis of PC patients.MethodsThe miRNA and mRNA expression profile data of 485 PC patients were obtained from The Cancer Genome Atlas database. The univariate Cox regression was applied to screen miRNAs relating to prognosis of PC. Then miRTarBase was used to predict target mRNAs of miRNAs. The hsa-mir-503/hsa-mir-1247 knockdown in 22RV1 cells was established to evaluate the effect of these two miRNAs on tumor cell migration and invasion ability. Flow cytometry was used to detect the effect of hsa-mir-503/hsa-mir-1247 knockdown on 22RV1 apoptosis rate.ResultsUnivariate Cox regression analysis identified hsa-mir-503 as a poor and hsa-mir-1247 as a favorable prognostic marker. Totally 649 target mRNAs were screened, among which DUSP19, FGF2, and SLC2A5 had a negative correlation with hsa-mir-503, while FGF2 and VSTM4 had a positive correlation with hsa-mir-1247. In 22RV1 cells, hsa-mir-503 was up-regulated, and hsa-mir-1247 was down-regulated. hsa-mir-503 knockdown attenuated the migration and invasion of 22RV1 cells, while hsa-mir-1247 knockdown exhibited the opposite effect. In addition, hsa-mir-503 knockdown promoted 22RV1 cell apoptosis. hsa-mir-1247 overexpression significantly inhibited the tumor growth of PC in vivo.ConclusionsHerein, we demonstrated that hsa-mir-503 and hsa-mir-1247 could serve as new prognostic markers of PC, and hsa-mir-1247 had great potential to inhibit PC progression by suppressing the migration and invasion ability in vitro and in vivo.
Project description:Profile of transcripts isolated from Ago2 immunoprecipitation following transfection with miR-191 mature duplex and gene expression profile following transfection with miR-191 mature duplex
Project description:Many cellular processes are driven by spatially and temporally regulated microRNAs (miRNAs)-dependent signaling events. Substantial evidence collected over the years indicates that miRNAs are pivotal regulators that contribute to the initiation and development of EV71-related disorders. Importantly, so far, no clinical trial has been undertaken to address the effect of miRNAs on EV71-related diseases. In this study, we show that EV71 infection results in up-regulation of hsa-miR-494-3p levels, and that EV71-induced hsa-miR-494-3p impacts PI3K/Akt signaling pathway by targeting PTEN. However, very little is known about the relationship between hsa-miR-494-3p and EV71 infection. The overall goal of the study is to get a better insight into whether or not hsa-miR-494-3p is involved in the EV71 infection. We found that the EV71 infection induces cellular apoptosis, and that this process can be counteracted by the over-expression of hsa-miR-494-3p mimics. We also present evidence that cell lines deficient in hsa-miR-494-3p are more sensitive to EV71-induced cell death than the corresponding control cells. Collectively, these findings confirm and extend the pervious observation suggesting that disturbances in miRNAs expression can influence EV71 propagation. In addition, they lend strong support to the ideas that hsa-miR-494-3p-mediated signaling pathway plays an important role in the EV71 replication, and that this may have profound implications on our views on EV71-related diseases.
Project description:The discovery of missense mutations of ALK gene identified this receptor tyrosine kinase as a therapeutic target in neuroblastoma (NB). Moreover, a high level of ALK protein has been associated with metastatic NB cases and with a worse prognosis, suggesting that also ALK overexpression is involved in NB tumorigenesis. Since miRNAs play key roles in the regulation of gene expression we aimed at identifying those miRNAs that can regulate ALK in NB. We therefore analyzed the genome-wide expression profile of miRNAs in two sample sets of 16 NB cell lines and 22 NB samples by using miRNA microarrays. Both sample sets were then divided into two subgroups showing high (ALK+) or low/absent (ALK-) expression of ALK. Results showed a down-regulation of 30 and 23 miRNAs (p-value <0.05) in the ALK+ group in NB cell lines and samples, respectively. Validation analysis indicated that miR-424-5p and miR-503-5p, belonging to the same cluster, were differentially expressed in both NB cell lines and tumor samples. Although only miR-424-5p showed a direct binding to ALK 3'-UTR, both miRNAs led to a remarkable decreasing of ALK protein as well as to the inhibition of cell viability in ALK+ NB cell lines. In conclusion, our data indicate that both miR-424-5p and miR-503-5p are involved in regulating ALK expression in NB, either by directly targeting ALK receptor or indirectly, and may thus serve as potential therapeutic tools in ALK dependent NBs.