Project description:Episodic Ebola virus (EBOV) outbreaks, such as the current one in West Africa, emphasize the critical need for novel antivirals against this highly pathogenic virus. Here, we demonstrate that interferon gamma (IFNγ) prevents morbidity and mortality associated with EBOV infection when administered to mice either 24 hours prior to or 2 hours following EBOV infection. Microarray studies with IFNγ-stimulated human macrophages identified novel interferon-stimulated genes (ISGs) that inhibit EBOV infection upon ectopic expression. IFNγ treatment reduced viral RNA levels in macrophages to a similar degree as cells treated with the protein synthesis inhibitor, cycloheximide, suggesting that IFNγ treatment inhibits genome replication. As IFNγ treatment robustly protects mice against EBOV infection, we propose that this FDA-approved drug may serve as a useful prophylactic or therapeutic strategy during EBOV outbreaks, contributing to the currently limited arsenal of filovirus antivirals.
Project description:Episodic Ebola virus (EBOV) outbreaks, such as the current one in West Africa, emphasize the critical need for novel antivirals against this highly pathogenic virus. Here, we demonstrate that interferon gamma (IFNγ) prevents morbidity and mortality associated with EBOV infection when administered to mice either 24 hours prior to or 2 hours following EBOV infection. Microarray studies with IFNγ-stimulated human macrophages identified novel interferon-stimulated genes (ISGs) that inhibit EBOV infection upon ectopic expression. IFNγ treatment reduced viral RNA levels in macrophages to a similar degree as cells treated with the protein synthesis inhibitor, cycloheximide, suggesting that IFNγ treatment inhibits genome replication. As IFNγ treatment robustly protects mice against EBOV infection, we propose that this FDA-approved drug may serve as a useful prophylactic or therapeutic strategy during EBOV outbreaks, contributing to the currently limited arsenal of filovirus antivirals.
Project description:During the 2013-2016 Ebola virus (EBOV) epidemic, a significant number of patients admitted to Ebola treatment units were co-infected with Plasmodium falciparum, a predominant agent of malaria. However, there is no consensus on how malaria impacts EBOV infection. The effect of acute Plasmodium infection on EBOV challenge was investigated using mouse-adapted EBOV and a biosafety level 2 (BSL-2) model virus. We demonstrate that acute Plasmodium infection protects from lethal viral challenge, dependent upon interferon gamma (IFN-?) elicited as a result of parasite infection. Plasmodium-infected mice lacking the IFN-? receptor are not protected. Ex vivo incubation of naive human or mouse macrophages with sera from acutely parasitemic rodents or macaques programs a proinflammatory phenotype dependent on IFN-? and renders cells resistant to EBOV infection. We conclude that acute Plasmodium infection can safeguard against EBOV by the production of protective IFN-?. These findings have implications for anti-malaria therapies administered during episodic EBOV outbreaks in Africa.
Project description:Ebola virus outbreaks, such as the 2014 Makona epidemic in West Africa, are episodic and deadly. Filovirus antivirals are currently not clinically available. Our findings suggest interferon gamma, an FDA-approved drug, may serve as a novel and effective prophylactic or treatment option. Using mouse-adapted Ebola virus, we found that murine interferon gamma administered 24 hours before or after infection robustly protects lethally-challenged mice and reduces morbidity and serum viral titers. Furthermore, we demonstrated that interferon gamma profoundly inhibits Ebola virus infection of macrophages, an early cellular target of infection. As early as six hours following in vitro infection, Ebola virus RNA levels in interferon gamma-treated macrophages were lower than in infected, untreated cells. Addition of the protein synthesis inhibitor, cycloheximide, to interferon gamma-treated macrophages did not further reduce viral RNA levels, suggesting that interferon gamma blocks life cycle events that require protein synthesis such as virus replication. Microarray studies with interferon gamma-treated human macrophages identified more than 160 interferon-stimulated genes. Ectopic expression of a select group of these genes inhibited Ebola virus infection. These studies provide new potential avenues for antiviral targeting as these genes that have not previously appreciated to inhibit negative strand RNA viruses and specifically Ebola virus infection. As treatment of interferon gamma robustly protects mice from lethal Ebola virus infection, we propose that interferon gamma should be further evaluated for its efficacy as a prophylactic and/or therapeutic strategy against filoviruses. Use of this FDA-approved drug could rapidly be deployed during future outbreaks.