NF-κB activation impairs somatic cell reprogramming in ageing [NGPS_iPSCs]
Ontology highlight
ABSTRACT: Transcriptional profiling of human control and Néstor-Guillermo Progeria Syndrome (NGPS) fibroblasts and induced pluripotent stem cells (iPSCs). Somatic cell reprogramming involves rejuvenation of adult cells and relies on the ability to erase age-associated molecular marks. Accordingly, reprogramming efficiency declines with ageing, and age-associated features such as genetic instability, cell senescence or telomere shortening negatively affect this process. However, the regulatory mechanisms that constitute age-associated barriers for cell reprogramming remain largely unknown. Here, by using cells from patients with premature ageing, we demonstrate that NF-κB activation is a critical barrier for the generation of induced pluripotent stem cells (iPSCs) in ageing. We show that NF-κB repression occurs during cell reprogramming towards a pluripotent state. Conversely, ageing-associated NF-κB hyperactivation impairs generation of iPSCs by eliciting reprogramming repressors DOT1L and YY1, reinforcing cell senescence signals and down-regulating pluripotency genes. We also show that genetic and pharmacological NF-κB inhibitory strategies significantly increase the reprogramming efficiency of fibroblasts from Néstor-Guillermo Progeria Syndrome (NGPS) and Hutchinson-Gilford Progeria Syndrome (HGPS) patients, as well as from normal aged donors. Finally, we demonstrate that DOT1L inhibition in vivo ameliorates the accelerated ageing phenotype and extends lifespan in a progeroid animal model. Collectively, our results provide evidence for a novel role of NF-κB in the control of cell fate transitions and reinforce the interest of studying age-associated molecular impairments to implement cell reprogramming methodologies, and to identify new targets of rejuvenation strategies.
ORGANISM(S): Homo sapiens
PROVIDER: GSE65170 | GEO | 2015/07/01
SECONDARY ACCESSION(S): PRJNA273328
REPOSITORIES: GEO
ACCESS DATA