Characteristic expression of MSX1, MSX2, TBX2, and ENTPD1 in dental pulp cells
Ontology highlight
ABSTRACT: Dental pulp cells (DPCs) are a promising source of transplantable cells in regenerative medicine. However, DPCs have not been fully characterized at the molecular level. The purpose of this study was to distinguish DPCs from various source-derived mesenchymal stem cells, fibroblasts, and other cells by the expression of several DPC-characteristic genes. DPCs were isolated from human pulp tissues by the explant method, or the enzyme digestion method, and maintained with media containing 10% serum or 7.5% platelet-rich plasma. RNA was isolated from the cells and from dental pulp tissue specimens. The mRNA levels were determined by DNA microarray and quantitative real-time PCR analyses. The msh homeobox1 (MSX1), msh homeobox 2 (MSX2), T-box 2 (TBX2), and ectonucleoside triphosphate diphosphohydrolase 1 (ENTPD1) mRNA levels in DPCs were higher than the levels found in the following cells: mesenchymal stem cells, derived from bone marrow, synovium, and adipose tissue; and in cells such as fibroblasts, osteoblasts, adipocytes, and chondrocytes. The enhanced expression in DPCs was consistently observed irrespective of donor age, tooth type, and culture medium. Moreover, these genes were expressed at high levels in dental pulp tissue in vivo. We conclude that this gene set may be useful in the identification and characterization of DPCs in basic studies and pulp cell-based regeneration therapy.
ORGANISM(S): Homo sapiens
PROVIDER: GSE66084 | GEO | 2016/06/20
SECONDARY ACCESSION(S): PRJNA275856
REPOSITORIES: GEO
ACCESS DATA