Genomics

Dataset Information

0

Optimization of miRNA-seq Data Pre-Processing


ABSTRACT: Next-generation sequencing is currently the platform of choice for the discovery and quantification of miRNAs. Despite this, there is no clear consensus on how the data should be pre-processed prior to conducting downstream analyses. Often overlooked, data pre-processing is an essential step in data analysis: the presence of unreliable features and noise can affect the conclusions drawn from downstream analyses. Using a spike-in dilution study, we evaluated the effects of several general-purpose aligners (BWA, Bowtie, Bowtie 2 and Novoalign), and normalization methods (counts-per-million, total count scaling, upper quartile scaling, Trimmed Mean of M, DESeq, linear regression, cyclic loess and quantile) with respect to the final miRNA count data distribution, variance, bias and accuracy of differential expression analysis.

ORGANISM(S): Homo sapiens

PROVIDER: GSE67074 | GEO | 2015/03/21

SECONDARY ACCESSION(S): PRJNA278977

REPOSITORIES: GEO

Dataset's files

Source:
Action DRS
Other
Items per page:
1 - 1 of 1

Similar Datasets

2014-06-23 | E-GEOD-54461 | biostudies-arrayexpress
2012-12-18 | E-GEOD-42968 | biostudies-arrayexpress
2020-03-31 | PXD016004 | Pride
2018-02-06 | GSE110114 | GEO
2014-06-23 | GSE54461 | GEO
2020-11-02 | GSE109523 | GEO
2013-07-24 | PXD000190 | Pride
2022-12-07 | E-MTAB-11673 | biostudies-arrayexpress
2019-02-21 | GSE126814 | GEO
2013-11-15 | GSE49297 | GEO