Time course of glucocortiocid receptor isoforms
Ontology highlight
ABSTRACT: Glucocorticoids regulate diverse physiologic processes and synthetic derivatives of these natural hormones are widely used in the treatment of inflammatory diseases. However, chronic administration often triggers insensitivity and serious side effects including osteoporosis. The underlying mechanisms regulating these side effects are not completely understood. We report here that human osteosarcoma U-2 OS bone cells lacking the glucocorticoid receptor (GR) are resistant to glucocorticoid killing whereas the expression of wild-type GR activates an apoptotic program. Furthermore, we show that the translationally generated GR isoforms from a single GR gene have distinct abilities to induce apoptosis in these cells. Only cells expressing selective GR isoforms underwent apoptosis upon dexamethasone treatment and microarray analysis demonstrated that GR isoforms selectively stimulated the expression of pro-apoptotic enzymes such as caspase 6 and granzyme A. Chromatin immunoprecipitation assays further revealed that GR isoform-dependent induction of pro-apoptotic genes is likely due to selective coregulator recruitment and chromatin modification. Together, these findings provide evidence for a direct apoptotic effect of glucocorticoids on bone cells via selective GR isoforms and delineate multiple molecular components involved in tissue-specific glucocorticoid-induced bone cell apoptosis. Keywords: time course, isoform comparison
ORGANISM(S): Homo sapiens
PROVIDER: GSE6711 | GEO | 2007/12/20
SECONDARY ACCESSION(S): PRJNA99033
REPOSITORIES: GEO
ACCESS DATA