Gene Expression Profiling of Hormonal Regulation Related to the Residual Feed Intake of Holstein Cattle
Ontology highlight
ABSTRACT: An accumulation of over a decade of research in cattle has shown that genetic selection for decreased residual feed intake (RFI), defined as the difference between an animal’s actual feed intake and its expected feed intake, is a viable option for improving feed efficiency and reducing the feed requirements of herds, thereby improving the profitability of cattle producers. Hormonal regulation is one of the most important factors in feed intake. To determine the relationship between hormones and feed efficiency, we performed gene expression profiling of hormonal regulation in whole blood of Chinese Holstein cattle with low and high RFI coefficients. 857 differential expression genes (from 24683 genes) were found. Among these, 415 genes were up-regulated and 442 genes were down-regulated in the low RFI group. The gene ontology (GO) search revealed 6 significant terms and 64 genes associated with hormonal regulation, and the Kyoto Encyclopedia of Genes and Genomes (KEGG) selected the adipocytokine signaling pathway, insulin signaling pathway. In conclusion, the study indicated that the molecular expression of genes associated with hormonal regulation differs in dairy cows, depending on their RFI coefficients, and that these differences may be related to the molecular regulation of the leptin-NPY and insulin signaling pathways.
Project description:The objective of this study was to decipher the molecular basis of feed efficiency in meat-type chicken using duodenum tissues from a chicken population divergently selected for residual feed intake (RFI). Residual feed intake is the deviation of expected feed intake from actual feed intake. Chickens that consume less feed than expected are efficient (LRFI) and chickens that consume more feed than expected are inefficient (HRFI). A divergent selection for RFI was undertaken using an unselected random bred chicken population. RFI at day 35-42 was used as a criterion for selecting low (LRFI) and high (HRFI) RFI. Duodenum tissues were collected from 16 male chickens under sterile conditions experimentation. Tissues were collected from 4 males at days 35 and 42 in each line.
Project description:The objective of this study was to decipher the molecular basis of feed efficiency in meat-type chicken using duodenum tissues from a chicken population divergently selected for residual feed intake (RFI). Residual feed intake is the deviation of expected feed intake from actual feed intake. Chickens that consume less feed than expected are efficient (LRFI) and chickens that consume more feed than expected are inefficient (HRFI). A divergent selection for RFI was undertaken using an unselected random bred chicken population. RFI at day 35-42 was used as a criterion for selecting low (LRFI) and high (HRFI) RFI. Duodenum tissues were collected from 16 male chickens under sterile conditions experimentation. Tissues were collected from 4 males at days 35 and 42 in each line. Duodenum at 35 and 42 days from a chicken population divergently selected for residual feed intake were utilized for RNA extraction and hybridization on Affymetrix microarrays.
Project description:MicroRNAs (miRNAs) are short non-coding RNAs that post-transcriptionally regulate expression of mRNAs in many biological pathways. Here we report comprehensive miRNAs profiles by next-gen deep sequencing in Angus cattle divergently selected for residual feed intake (RFI) and identify miRNAs related to feed efficiency in beef cattle Results: Two microRNA libraries were constructed from pooled RNA extracted from livers of low and high RFI cattle, and sequenced by Illumina genome analyser. In total, 23,628,103 high quality short sequence reads were obtained and more than half of these reads were matched to the bovine genome (UMD 3.1). We identified 305 known bovine miRNAs (miRBase v.19). Bta-miR-143, bta-miR-30, bta-miR-122, bta-miR-378 and bta-let-7 were the top five most abundant miRNAs families expressed in liver, representing more than 63% of expressed miRNAs. We also identified 52 homologous miRNAs and 10 novel putative bovine-specific miRNAs, based on precursor sequence and the secondary structure and utilizing the miRBase (version 19). We compared the miRNAs profile between high and low RFI animals and ranked the most differentially expressed bovine known miRNAs. Bovine miR-143 was the most abundant miRNA in the bovine liver and comprised 20% of total expressed mapped miRNAs. The most highly expressed miRNA in liver of mice and humans, miR-122, was the third most abundant in our cattle liver samples. We also identified 10 putative novel bovine-specific miRNA candidates. Differentially expressed miRNAs between high and low RFI cattle were identified with 18 miRNAs being up-regulated and 7 other miRNAs down-regulated in low RFI cattle Conclusions: Our study has identified comprehensive miRNAs expressed in bovine liver. Some of the expressed miRNAs are novel in cattle. The differentially expressed miRNAs between high and low RFI give some insights into liver miRNAs regulating physiological pathways underlying residual feed intake in bovine
Project description:The biological mechanisms associated with the residual feed intake in ruminants have been harnessed immensely via transcriptome analysis of liver and ruminal epithelium, however, this concept has not been fully explored using whole blood. We applied whole blood transcriptome analysis and gene set enrichment analysis to identify key pathways associated with divergent selection for low or high RFI in beef cattle. A group of 56 crossbred beef steers (average BW = 261.3 ± 18.5 kg) were adapted to a high-forage total mixed ration in a confinement dry lot equipped with GrowSafe intake nodes for period of 49 d to determine their residual feed intake (RFI). After RFI determination, weekly whole blood samples were collected three times from beef steers with the lowest RFI (most efficient; low-RFI; n = 8) and highest RFI (least efficient; high-RFI; n = 8). Prior to RNA extraction, whole blood samples collected were composited for each steer. Sequencing was performed on an Illumina NextSeq2000 equipped with a P3 flow. Gene set enrichment analysis (GSEA) was used to analyze differentially expressed gene sets and pathways between the two groups of steers. Results of GSEA revealed pathways associated with metabolism of proteins, cellular responses to external stimuli, stress, and heat stress were differentially inhibited (false discovery rate (FDR) < 0.05) in high-RFI compared to low-RFI beef cattle, while pathways associated with binding and uptake of ligands by scavenger receptors, scavenging of heme from plasma, and erythrocytes release/take up oxygen were differentially enriched (FDR < 0.05) in high-RFI, relative to low-RFI beef cattle. Taken together, our results revealed that beef steers divergently selected for low or high RFI revealed differential expressions of genes related to protein metabolism and stress responsiveness.
Project description:Residual feed intake (RFI) is a measure of feed efficiency, where low RFI denotes high feed efficiency. Caloric restriction (CR) is associated with feed efficiency in livestock species and to human health benefits such as longevity and cancer prevention. We have developed pig lines that differ in RFI and are interested to identify the genes and pathways that underlie feed efficiency. Prepubertal Yorkshire gilts with low RFI (n=10) or high RFI (n=10) were fed ad libitum or at 80% of maintenance for eight days. We measured serum metabolites and generated transcriptional profiles of liver and subcutaneous adipose tissue. 6,114 genes in fat and 305 genes in liver were differentially expressed (DE) in response to CR and 311 in fat and 147 in liver were DE due to RFI differences. Pathway analyses of CR-induced DE genes indicated a switch to a conservation mode of energy by down-regulating lipogenesis and steroidogenesis in both liver and fat. Interestingly, CR in pigs altered expression of genes in immune and cell cycle/apoptotic pathways in fat, which may explain part of the CR-driven lifespan enhancement. In-silico analysis of transcription factors revealed ESR1 as a putative regulator of the adaptive response to CR and several targets of ESR1 in our DE fat genes were annotated as cell cycle/apoptosis genes. Lipid metabolic pathway was overrepresented by down-regulated genes due to both CR and low RFI. We propose a common energy conservation mechanism, which may be controlled by PPARA, PPARG, and/or CREB in both CR and feed efficient pigs. Prepubertal Yorkshire gilts with low RFI (n=10) or high RFI (n=10) were fed ad libitum or at 80% of maintenance for eight days in 2 x 2 complete factorial arrangement.
Project description:Residual feed intake (RFI) is a measure of feed efficiency, where low RFI denotes high feed efficiency. Caloric restriction (CR) is associated with feed efficiency in livestock species and to human health benefits such as longevity and cancer prevention. We have developed pig lines that differ in RFI and are interested to identify the genes and pathways that underlie feed efficiency. Prepubertal Yorkshire gilts with low RFI (n=10) or high RFI (n=10) were fed ad libitum or at 80% of maintenance for eight days. We measured serum metabolites and generated transcriptional profiles of liver and subcutaneous adipose tissue. 6,114 genes in fat and 305 genes in liver were differentially expressed (DE) in response to CR and 311 in fat and 147 in liver were DE due to RFI differences. Pathway analyses of CR-induced DE genes indicated a switch to a conservation mode of energy by down-regulating lipogenesis and steroidogenesis in both liver and fat. Interestingly, CR in pigs altered expression of genes in immune and cell cycle/apoptotic pathways in fat, which may explain part of the CR-driven lifespan enhancement. In-silico analysis of transcription factors revealed ESR1 as a putative regulator of the adaptive response to CR and several targets of ESR1 in our DE fat genes were annotated as cell cycle/apoptosis genes. Lipid metabolic pathway was overrepresented by down-regulated genes due to both CR and low RFI. We propose a common energy conservation mechanism, which may be controlled by PPARA, PPARG, and/or CREB in both CR and feed efficient pigs.
Project description:The aim of this study was to measure the effect of contrasting breed and dietary source on the skeletal muscle miRNA profile of beef cattle divergent for feed efficiency (RFI). Charolais (n=90) and Holstein-Fresian (N=77) steers) were offered two consecutive diets; namely a zero-grazed grass diet followed by a high concentrate diet. Dietary intakes were recorded for all steers throughout each dietary phase and residual feed intake values dertermined for each steer. At the end of each dietary phase the most efficient (Low-RFI; n=8) and least efficient (High-RFI; n=8) steers were selected across each breed for longissmus dorsi biopsy collection. RNA was isolated from all muscle tissue samples and subsequently used for small RNA sequencing. Ten miRNA were differentially expressed between the steers divergent for RFI across each diet and breed contrast. Biological pathway analyssi revealed enrichment of pathways related to both metabolic and growth processes.
Project description:Improvement of feed efficiency would increase profitability of the poultry industries by decreasing the amount of feed required for production. Korat (KR) chicken is a new alternative meat-type chicken breed which its meat is recognized for its high protein, low fat and low purine content, whereas its low feed efficiency leads to high cost of production. Deeper understanding on how feed efficiency influences meat quality is poorly elucidated. To fulfill deeper understand molecular key that point the variation in feed efficiency and meat quality, the aim of this study was to investigate molecular pathways and genes involved in feed efficiency and meat quality in thigh of slow-growing KR chicken. A total of 75 males KR chicken were reared in individual cage until 10 weeks of age. Individual feed intake and body weight were collected weekly to calculate Feed Conversion Ratio (FCR) and Residual Feed Intake (RFI). Meat quality parameters were measured in thigh muscles such as ultimate pH (pHu), water-holding capacity (WHC), drip loss (DL), nucleotides content and several biomolecules (amide, …). Base on extreme values of FCR at 10 weeks of ages, 12 birds from the high FCR group (HFCR) and 9 birds from the low FCR group (LFCR) were selected for investigating their transcriptome using an 8×60K Agilent chicken microarray. In addition, a weighted gene coexpression network analysis was performed to detect the relationship between modules of co-expressed genes and feed efficiency, meat quality in thigh muscle. The result in this study indicated that selection on feed efficiency (FCR, RFI) would affect flavor precursor, lipid and protein content in thigh muscle. Based on WGCNA and functional enrichment analysis, results suggested that the key molecular pathways relate to FCR, RFI and meat quality (WHC, DL, IMP, AMP and inosine) in thigh muscle were the pathways of regulation of biological process, biological regulation and regulation of metabolic. Moreover, we revealed four genes there are assembly competence domain (ACD) gene, baculoviral IAP repeat containing 5 (BIRC5) gene, cytochrome c oxidase assembly factor 3 (COA3) gene and myosin light chain 9 (MYL9) gene that might be biomarker gene in feed efficiency and meat quality in thigh muscle. The hypothesis of the current study was alteration feed efficiency in slow-growing chicken will impact meat quality especially in term of texture and flavor.