The role of Tet3 in regulating gene expression in response to global synaptic activity changes
Ontology highlight
ABSTRACT: Counter to the long-held belief that DNA methylation of terminally differentiated cells is permanent and essentially immutable, post-mitotic neurons exhibit extensive DNA demethylation. The causal role of active DNA demethylation in neurons, however, is not known. Tet family proteins oxidize 5-methylcytosine to initiate active DNA demethylation through the base-excision repair pathway. Here, we show that synaptic activity bi-directionally regulates neuronal Tet3 expression. Functionally, knockdown of Tet or inhibition of base-excision repair in hippocampal neurons elevates excitatory glutamatergic synaptic transmission, whereas overexpressing Tet3 or Tet1 catalytic domain decreases it. Furthermore, dysregulation of Tet3 signalling prevents homeostatic synaptic plasticity. Mechanistically, Tet3 dictates neuronal surface GluR1 levels. RNA-seq analyses further revealed a pivotal role of Tet3 in regulating gene expression in response to global synaptic activity changes. Thus, Tet3 serves as a synaptic activity sensor to epigenetically regulate basic properties and meta-plasticity of neurons via active DNA demethylation.
Project description:Active DNA demethylation in mammals involves TET-mediated iterative oxidation of 5-methylcytosine (5mC)/5-hydroxymethylcytosine (5hmC) and subsequent excision repair of highly oxidized cytosine bases 5-formylcytosine (5fC)/5-carboxylcytosine (5caC) by Thymine DNA glycosylase (TDG). However, quantitative and high-resolution analysis of active DNA demethylation activity remains challenging. Here we describe M.SssI methylase-assisted bisulfite sequencing (MAB-seq), a method that directly maps 5fC/5caC at single-base resolution. Genome-wide MAB-seq allows systematic identification of 5fC/5caC in Tdg-depleted embryonic stem cells, thereby generating a base-resolution map of active DNA demethylome. A comparison of 5fC/5caC and 5hmC distribution maps indicates that catalytic processivity of TET enzymes correlates with local chromatin accessibility. MAB-seq also reveals strong strand asymmetry of active demethylation within palindromic CpGs. Integrating MAB-seq with other base-resolution mapping methods enables quantitative measurement of cytosine modification states at key transitioning steps of active demethylation pathway, and reveals a regulatory role of 5fC/5caC excision repair in active DNA demethylation cascade. Analysis of 5fC/5caC excision repair-dependent active DNA demethylome by MAB-seq in mouse embryonic stem cells.
Project description:The epigenomes of mammalian sperm and oocytes, characterized by gamete-specific 5-methylcytosine (5mC) patterns, are reprogrammed during early embryogenesis to establish full developmental potential. Previous studies have suggested that the paternal genome is actively demethylated in the zygote while the maternal genome undergoes subsequent passive demethylation via DNA replication during cleavage. Active demethylation is known to depend on 5mC oxidation by Tet dioxygenases and excision of oxidized bases by thymine DNA glycosylase (TDG). Here we show that both maternal and paternal genomes undergo widespread active and passive demethylation in zygotes before the first mitotic division. Passive demethylation was blocked by the replication inhibitor aphidicolin, and active demethylation was abrogated by deletion of Tet3 in both pronuclei. At actively demethylated loci, 5mCs were processed to unmodified cytosines. Surprisingly, the demethylation process was unaffected by the deletion of TDG from the zygote, suggesting the existence of other demethylation mechanisms downstream of Tet3-mediated oxidation. The dataset includes RRBS anlysis of 2 MII oocyte samples, 3 WT female pronuclei samples PN3-4 stage, 2 Tet3 KO female pronuclei samples and 2 Aphidicolin treated female pronuclei samples. Also as male counterpart, a Sperm sample, 2 WT male pronuclei samples PN3-4 stage, 2 Tet3 KO male pronuclei samples and 2 Aphidicolin treated male pronuclei samples were included.
Project description:Active DNA demethylation in mammals involves TET-mediated iterative oxidation of 5-methylcytosine (5mC)/5-hydroxymethylcytosine (5hmC) and subsequent excision repair of highly oxidized cytosine bases 5-formylcytosine (5fC)/5-carboxylcytosine (5caC) by Thymine DNA glycosylase (TDG). However, quantitative and high-resolution analysis of active DNA demethylation activity remains challenging. Here we describe M.SssI methylase-assisted bisulfite sequencing (MAB-seq), a method that directly maps 5fC/5caC at single-base resolution. Genome-wide MAB-seq allows systematic identification of 5fC/5caC in Tdg-depleted embryonic stem cells, thereby generating a base-resolution map of active DNA demethylome. A comparison of 5fC/5caC and 5hmC distribution maps indicates that catalytic processivity of TET enzymes correlates with local chromatin accessibility. MAB-seq also reveals strong strand asymmetry of active demethylation within palindromic CpGs. Integrating MAB-seq with other base-resolution mapping methods enables quantitative measurement of cytosine modification states at key transitioning steps of active demethylation pathway, and reveals a regulatory role of 5fC/5caC excision repair in active DNA demethylation cascade.
Project description:TET enzymes mediate DNA demethylation by oxidizing 5-methylcytosine (5mC) in DNA to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC). Because these oxidized methylcytosines (oxi-mC) are not recognized by the maintenance methyltransferase DNMT1, DNA demethylation can occur through “passive”, replication-dependent dilution as cells divide. A distinct, replication-independent (“active”) mechanism of DNA demethylation involves excision of 5fC and 5caC by the DNA repair enzyme thymine DNA glycosylase (TDG), followed by base excision repair. Here we used inducible gene-disrupted mice to show that TET enzymes influence both replication-dependent primary T cell differentiation and replication-independent macrophage differentiation, whereas TDG has no effect. Mice with long-term (1 year) deletion of Tdg are healthy and show normal survival and hematopoiesis. In summary, TET enzymes regulate differentiation and DNA demethylation primarily through passive dilution of oxidized methylcytosines in replicating T cells, and active, replication-independent DNA demethylation mediated by TDG does not appear to be essential for immune cell activation or differentiation.
Project description:TET enzymes mediate DNA demethylation by oxidizing 5-methylcytosine (5mC) in DNA to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC). Because these oxidized methylcytosines (oxi-mC) are not recognized by the maintenance methyltransferase DNMT1, DNA demethylation can occur through “passive”, replication-dependent dilution as cells divide. A distinct, replication-independent (“active”) mechanism of DNA demethylation involves excision of 5fC and 5caC by the DNA repair enzyme thymine DNA glycosylase (TDG), followed by base excision repair. Here we used inducible gene-disrupted mice to show that TET enzymes influence both replication-dependent primary T cell differentiation and replication-independent macrophage differentiation, whereas TDG has no effect. Mice with long-term (1 year) deletion of Tdg are healthy and show normal survival and hematopoiesis. In summary, TET enzymes regulate differentiation and DNA demethylation primarily through passive dilution of oxidized methylcytosines in replicating T cells, and active, replication-independent DNA demethylation mediated by TDG does not appear to be essential for immune cell activation or differentiation.
Project description:TET enzymes mediate DNA demethylation by oxidizing 5-methylcytosine (5mC) in DNA to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC). Because these oxidized methylcytosines (oxi-mC) are not recognized by the maintenance methyltransferase DNMT1, DNA demethylation can occur through “passive”, replication-dependent dilution as cells divide. A distinct, replication-independent (“active”) mechanism of DNA demethylation involves excision of 5fC and 5caC by the DNA repair enzyme thymine DNA glycosylase (TDG), followed by base excision repair. Here we used inducible gene-disrupted mice to show that TET enzymes influence both replication-dependent primary T cell differentiation and replication-independent macrophage differentiation, whereas TDG has no effect. Mice with long-term (1 year) deletion of Tdg are healthy and show normal survival and hematopoiesis. In summary, TET enzymes regulate differentiation and DNA demethylation primarily through passive dilution of oxidized methylcytosines in replicating T cells, and active, replication-independent DNA demethylation mediated by TDG does not appear to be essential for immune cell activation or differentiation.
Project description:The epigenomes of mammalian sperm and oocytes, characterized by gamete-specific 5-methylcytosine (5mC) patterns, are reprogrammed during early embryogenesis to establish full developmental potential. Previous studies have suggested that the paternal genome is actively demethylated in the zygote while the maternal genome undergoes subsequent passive demethylation via DNA replication during cleavage. Active demethylation is known to depend on 5mC oxidation by Tet dioxygenases and excision of oxidized bases by thymine DNA glycosylase (TDG). Here we show that both maternal and paternal genomes undergo widespread active and passive demethylation in zygotes before the first mitotic division. Passive demethylation was blocked by the replication inhibitor aphidicolin, and active demethylation was abrogated by deletion of Tet3 in both pronuclei. At actively demethylated loci, 5mCs were processed to unmodified cytosines. Surprisingly, the demethylation process was unaffected by the deletion of TDG from the zygote, suggesting the existence of other demethylation mechanisms downstream of Tet3-mediated oxidation.
Project description:Ten-eleven translocation (Tet) hydroxylases (Tet1-3) oxidize 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC). In neurons increased 5hmC levels within gene bodies correlate positively with gene expression. The mechanisms controlling Tet activity and 5hmC levels are poorly understood. In particular, it is not known how the neuronal Tet3 isoform lacking a DNA binding domain is targeted to the DNA. To identify factors binding to Tet3 we screened for proteins that co-precipitate with Tet3 from mouse retina and identified the transcriptional repressor Rest as a highly enriched Tet3-specific interactor. Rest was able to enhance Tet3 hydroxylase activity after co-expression and overexpression of Tet3 activated transcription of Rest-target genes. Moreover, we found that Tet3 also interacts with Nsd3 and two other H3K36 methyltransferases and is able to induce H3K36 trimethylation. We propose a mechanism for transcriptional activation in neurons that involves Rest-guided targeting of Tet3 to the DNA for directed 5hmC-generation and Nsd3-mediated H3K36 trimethylation.
Project description:Neurons harbor high levels of endogenous single strand DNA breaks (SSBs) that are targeted to neuronal enhancers and correlate with marks of DNA demethylation. To determine the source of SSBs at neuronal enhancers, we depleted the thymidine DNA glycosylase TDG, which excises TET-mediated oxidized methylcytidines 5fC and 5caC, to produce unmodified C. In differentiating neurons, induced degradation of TDG led to the disappearance of SSBs, demonstrating the existence of ongoing TET‑mediated oxidation. Using an independent model of macrophage differentiation from reprogrammed pre-B cells, we demonstrate that TET/TDG-mediated active demethylation may be a general mechanism underlying post-mitotic lineage specification. We find that macrophage differentiation prefers short patch base excision repair (SP-BER) to fill-in single nucleotide gaps, whereas neurons also frequently utilize the long-patch (LP-BER) sub-pathway. By measuring the distribution of SSBs relative to sites of oxidized cytosine, we observed that stretches of 2-30 bases are synthesized distal from the methylated CpG site during repair. Disrupting gap-filling using anti-neoplastic nucleoside analogs resulted in continuous DNA damage/repair events at enhancers each resolving within 1-2 hours, but ultimately triggering neuronal cell death. This DNA damage response and toxicity was dependent on TDG activity. Thus, TET-mediated active DNA demethylation promotes endogenous DNA damage at regulatory elements, a process which normally contributes to cell identity but can also provoke neurotoxicity following anti-cancer treatments.
Project description:Neurons harbor high levels of endogenous single strand DNA breaks (SSBs) that are targeted to neuronal enhancers and correlate with marks of DNA demethylation. To determine the source of SSBs at neuronal enhancers, we depleted the thymidine DNA glycosylase TDG, which excises TET-mediated oxidized methylcytidines 5fC and 5caC, to produce unmodified C. In differentiating neurons, induced degradation of TDG led to the disappearance of SSBs, demonstrating the existence of ongoing TET‑mediated oxidation. Using an independent model of macrophage differentiation from reprogrammed pre-B cells, we demonstrate that TET/TDG-mediated active demethylation may be a general mechanism underlying post-mitotic lineage specification. We find that macrophage differentiation prefers short patch base excision repair (SP-BER) to fill-in single nucleotide gaps, whereas neurons also frequently utilize the long-patch (LP-BER) sub-pathway. By measuring the distribution of SSBs relative to sites of oxidized cytosine, we observed that stretches of 2-30 bases are synthesized distal from the methylated CpG site during repair. Disrupting gap-filling using anti-neoplastic nucleoside analogs resulted in continuous DNA damage/repair events at enhancers each resolving within 1-2 hours, but ultimately triggering neuronal cell death. This DNA damage response and toxicity was dependent on TDG activity. Thus, TET-mediated active DNA demethylation promotes endogenous DNA damage at regulatory elements, a process which normally contributes to cell identity but can also provoke neurotoxicity following anti-cancer treatments.