1,25 (OH)2 vitamin D3 induces expression of CCR10 and other genes
Ontology highlight
ABSTRACT: Human naive T cells from peripheral blood were cultured in 24 wells coated with anti-CD3 and anti-CD28 antibodies in the presence or absence of retinoid acid, IL-12, and 1,25 (OH)2 vitamin D3. The T cells were FACS-sorted based on expression of CD3, integrin alpha4beta7, cutaneous lymphocyte antigen (CLA) and chemokine receptor 10. This serie includes microarray data from stimulated T cells under indicated conditions. Keywords: Human T cell, vitamin D and A, chemokine receptor, nuclear receptor
Project description:Human naive T cells from peripheral blood were cultured in 24 wells coated with anti-CD3 and anti-CD28 antibodies in the presence or absence of retinoid acid, IL-12, and 1,25 (OH)2 vitamin D3. The T cells were FACS-sorted based on expression of CD3, integrin alpha4beta7, cutaneous lymphocyte antigen (CLA) and chemokine receptor 10. This serie includes microarray data from stimulated T cells under indicated conditions. Experiment Overall Design: Total RNA was isolated from these sorted T cells using Invitrogen RNeasy mini-kit. The quality of RNA was prechecked by Agilent BioAnalyzer. Double-stranded cDNA was synthesized, and transcribed into Biotin-labeled cRNA, which was fragmented before hybridization. All the procedure was performed in the Stanford University PAN facility.
Project description:VitaminD deficiency has been related to a higher incidence of colorectal cancer. In order to further study the effect of VDR and its ligand as genome modulators we established stem cell enriched cultures of wt and VDR KO mice, treated with the active metabolite of Vitamin D and analyzed the changes in total RNA expression.
Project description:Background: Prostate cancer is the second leading cause of cancer mortality among US men. Epidemiological evidence suggests that high vitamin D status protects men from prostate cancer and the active form of vitamin D, 1α,25 dihydroxyvitamin D3 (1,25(OH)2D) has anti-cancer effects in cultured prostate cells. Still, the molecular mechanisms and the gene targets for vitamin D-mediated prostate cancer prevention are unknown. Results: We examined the effect of 1,25(OH)2D (+/- 100 nM, 6, 24, 48 h) on the transcript profile of proliferating RWPE1 cells, an immortalized, non-tumorigenic prostate epithelial cell line that is growth arrested by 1,25(OH)2D (Affymetrix U133 Plus 2.0, n=4/treatment per time and dose). Our analysis revealed many transcript level changes at a 5% false detection rate: 6 h, 1571 (61% up), 24 h, 1816 (60 % up), 48 h, 3566 (38 % up). 288 transcripts were regulated similarly at all time points (182 up, 80 down) and many of the promoters for these transcripts contained putative vitamin D response elements. Functional analysis by pathway or Gene Set Analysis revealed early suppression of WNT, Notch, NF-kB, and IGF1 signaling. Transcripts related to inflammation were suppressed at 6 h (e.g. IL-1 pathway) and suppression of proinflammatory pathways continued at later time points (e.g. IL-17 and IL-6 pathways). There was also evidence for induction of anti-angiogenic pathways and induction of transcripts for protection from oxidative stress or maintenance of cell redox homeostasis at 6 h. Conclusions: Our data reveal of large number of potential new, direct vitamin D target genes relevant to prostate cancer prevention. In addition, our data suggests that rather than having a single strong regulatory effect, vitamin D orchestrates a pattern of changes within prostate epithelial cells that limit or slow carcinogenesis.
Project description:A novel pathway of vitamin D activation by CYP11A has previously been elucidated. To define the mechanism of action of its major dihydroxy-products, we tested the divergence and overlap between the gene expression profiles of human epidermal keratinocytes treated with either CYP11A1-derived 20,23(OH)₂D3 or classical 1,25(OH)₂D3. Both secosteroids have significant chemical similarity with the only differences being the positions of the hydroxyl groups. mRNA was isolated and examined by microarray analysis using Illumina's HumanWG-6 chip/arrays and subsequent bioinformatics analyses. Marked differences in the up- and downregulated genes were observed between 1,25(OH)₂D3- and 20,23(OH)₂D3-treated cells. Hierarchical clustering identified both distinct, opposite and common (overlapping) gene expression patterns. CYP24A1 was a common gene strongly activated by both compounds, a finding confirmed by qPCR. Ingenuity pathway analysis identified VDR/RXR signaling as the top canonical pathway induced by 1,25(OH)₂D3. In contrast, the top canonical pathway induced by 20,23(OH)₂D3 was AhR, with VDR/RXR being the second nuclear receptor signaling pathway identified. QPCR analyses validated the former finding by revealing that 20,23(OH)₂D3 stimulated CYP1A1 and CYP1B1 gene expression, effects located downstream of AhR. Similar stimulation was observed with 20(OH)D3, the precursor to 20,23(OH)₂D3, as well as with its downstream metabolite, 17,20,23(OH)₃D3. Using a Human AhR Reporter Assay System we showed marked activation of AhR activity by 20,23(OH)₂D3, with weaker stimulation by 20(OH)D3. Finally, molecular modeling using an AhR LBD model predicted vitamin D3 hydroxyderivatives to be good ligands for this receptor. Thus, our microarray, qPCR, functional studies and molecular modeling indicate that AhR is the major receptor target for 20,23(OH)₂D3, opening an exciting area of investigation on the interaction of different vitamin D3-hydroxyderivatives with AhR and the subsequent downstream activation of signal transduction pathways in a cell-type-dependent manner.
Project description:Fibroblast growth factor 23 (FGF23) is produced and secreted by osteocytes and is essential for maintaining phosphate homeostasis. One of the main regulators of FGF23, 1,25-dihydroxyvitamin D (1,25(OH)2D3), is primarily synthesized in the kidney from 25-hydroxyvitamin D (25(OH)D) by 1α-hydroxylase (encoded by CYP27B1). Hitherto, it is unclear whether osteocytes can convert 25(OH)D and thereby allow for 1,25(OH)2D3 to induce FGF23 production and secretion locally. Here, we differentiated MC3T3-E1 cells towards osteocyte-like cells expressing and secreting FGF23. Treatment with 10-6 M 25(OH)D resulted in conversion of 25(OH)D to 150 pmol/L 1,25(OH)2D3 and increased FGF23 expression and secretion but the converted amount of 1,25(OH)2D3 was insufficient to trigger an FGF23 response, so the effect on FGF23 was most likely directly caused by 25(OH)D. Interestingly, combining phosphate with 25(OH)D resulted in a synergistic increase in FGF23 expression and secretion, likely due to activation of additional signaling pathways by phosphate. Blockage of the vitamin D receptor (VDR) only partially abolished the effects of 25(OH)D or 25(OH)D combined with phosphate on Fgf23, while completely inhibiting the upregulation of cytochrome P450 family 24 subfamily A member 1 (Cyp24a1), encoding for 24-hydroxylase. RNA sequencing and in silico analyses showed that this could potentially be mediated by the nuclear receptors Retinoic Acid Receptor b (RARB) and Estrogen Receptor 2 (ESR2). Taken together, we demonstrate that osteocytes are able to convert 25(OH)D to 1,25(OH)2D3, but this is insufficient for FGF23 activation, implicating a direct effect of 25(OH)D in the regulation of FGF23, which occurs at least partially independent from its cognate vitamin D receptor Moreover, phosphate and 25(OH)D synergistically increase expression and secretion of FGF23, which warrants investigating consequences in patients receiving a combination of vitamin D analogues and phosphate supplements. These observations help us to further understand the complex relations between, phosphate, vitamin D and FGF23.
Project description:Studies to identify novel immune-regulatory functions of active vitamin D (1,25(OH)2D3) in human CD4+ T cells revealed that 1,25(OH)2D3 potently induced expression of the gene SERPINA1, encoding the anti-protease α-1-antitrypsin. We confirmed α-1-antitrypsin protein expression by 1,25(OH)2D3-treated CD4+ T cells, but not in CD8+ T cells or monocytes. α-1-Antitrypsin promotes anti-inflammatory IL-10 synthesis in other immune cell populations. We therefore investigated its immune-regulatory effects in CD4+ T cells. Plasma-derived α-1-antitrypsin drove IL-10 synthesis by CD4+ T cells, which was not dependent on anti-protease activity, but appeared to require a serum-binding factor, since this could not be achieved with recombinant protein. α-1-Antitrypsin is reported to bind complement components, which regulate T cell function. A role for this interaction was therefore probed. Plasma-derived, but not recombinant α-1-antitrypsin contained C3a. Surface Plasmon Resonance and Microscale Thermophoresis demonstrated α-1-antitrypsin binding to C3a. Addition of C3a to CD4+ T cells cultured with recombinant α-1-antitrypsin restored induction of IL-10, whereas neutralisation of C3a abrogated IL-10 induced by plasma-derived α-1-antitrypsin. To interrogate an endogenous role for the α-1-antitrypsin-C3a axis in 1,25(OH)2D3-driven CD4+ T cell IL-10 synthesis, we treated cells from healthy or α-1-antitrypsin-deficient individuals (which transcribe SERPINA1 but do not secrete protein) with 1,25(OH)2D3. A significant correlation was identified between SERPINA1 and IL10 gene expression in healthy donor CD4+ T cells, which was absent in cells from α-1-antitrypsin-deficient individuals. Therefore, α-1-antitrypsin is required for 1,25(OH)2D3-induced IL-10 expression in CD4+ T cells, interacting with C3a to drive IL-10 expression.
Project description:1,25-dihydroxyvitamin D3 (1,25(OH)2D3) exerts anti-proliferative activity by binding to the vitamin D receptor (VDR) and regulating gene expression. We previously reported that non-small cell lung cancer (NSCLC) cells which harbor epidermal growth factor receptor (EGFR) mutations display elevated VDR expression (VDRhigh) and are vitamin D-sensitive. Conversely, those with K-ras mutations are VDRlow and vitamin D-refractory. Because EGFR mutations are found predominately in NSCLC cells with an epithelial phenotype and K-ras mutations are more common in cells with a mesenchymal phenotype, we investigated the relationship between vitamin D signaling capacity and the epithelial mesenchymal transition (EMT). Using NSCLC cell lines and publically available lung cancer cell line microarray data, we identified a relationship between VDR expression, 1,25(OH)2D3 sensitivity, and EMT phenotype. Further, we discovered that 1,25(OH)2D3 induces E-cadherin and decreases EMT-related molecules SNAIL, ZEB1, and vimentin in NSCLC cells. 1,25(OH)2D3-mediated changes in gene expression are associated with a significant decrease in cell migration and maintenance of epithelial morphology. These data indicate that 1,25(OH)2D3 opposes EMT in NSCLC cells. Because EMT is associated with increased migration, invasion, and chemoresistance, our data imply that 1,25(OH)2D3 may prevent lung cancer progression in a molecularly defined subset of NSCLC patients.
Project description:Human testicular cells were isolated mechanically and enzymatically from testis of braindead donors and from urological samples. The expression of genes was studied at baseline and 1,25(OH)2D treated conditions. We used microarrays to analyze the gene expression underlying vitamin D metabolism in human testis cells and identified distinct classes of up-regulated genes during this process.
Project description:Recently, it has been reported that 25(OH)D3 (25D3) has physiological bioactivity in certain tissues derived from the Cyp27b1 knockout mice. To investigate 25D3 function in the kidney as an informational crossroad of various calciotropic substances, we employed CRISPR-Cas9 system to knock out the Cyp27b1 gene in the mouse renal tubular cell line, mDCT cells. Unlike the previously reported mice targeted to the Cyp27b1 gene systemically, Cyp27b1 knockout mDCT cells did not produce any measurable 1a,25(OH)2D3 (1,25D3) after 25D3 administration. As was seen in the treatment with 10-8 M and higher dose of 1,25D3, we found that 10-7 M of 25D3 could translocate VDR into the nucleus and promoted expression of the representative 1,25D3-responsive Cyp24a1 gene in the Cyp27b1 knockout mDCT cells. The exhaustive target gene profiles of 25D3 showed results closely mimicking those of 1,25D3. Subsequently, we confirmed that 25D3 induced the expression of a calcium reabsorption-related gene, Calbindin-D9K gene, in a similar way to 1,25D3. As another example among others, we found that both 1,25D3 and 25D3 induced the expression of Megalin gene. Our ChIP assay identified that two VDRE sites at the upstream region of the Megalin gene contributed to such gene activation. Together, we surmise that the ability to stimulate VDR target genes may provide a novel perspective with 25D3 contribution in certain tissues.