Uridylation of hairpin-RNAs by Tailor confines the emergence of miRNAs in Drosophila
Ontology highlight
ABSTRACT: Uridylation of diverse RNA species represents an emerging theme in post-transcriptional gene regulation. In the microRNA pathway, such modifications regulate small RNA biogenesis and stability in plants, worms and mammals. Here, we report the first uridylyltransferase that acts on small RNAs in Drosophila, which we refer to as Tailor. Tailor is the source for the majority of 3´ end-modifications in microRNAs and predominantly targets precursor-hairpins. Uridylation modulates the characteristic two-nucleotide 3´ overhangs of microRNA hairpins, which regulates processing by Dicer-1 and destabilizes RNA hairpins. Furthermore, Tailor preferentially uridylates mirtron-hairpins, thereby impeding the production of non-canonical microRNAs. Mirtron-selectivity is explained by unique primary sequence specificity of Tailor, selecting RNA substrates ending with a 3´ guanosine, a feature not previously observed for TUTases. In contrast to mirtrons, conserved Drosophila pre-miRNAs are significantly depleted in 3´ guanosine, thereby escaping regulatory uridylation. Our data support the hypothesis that evolutionary adaptation to pre-miRNA uridylation shapes the nucleotide composition of pre-miRNA 3´ ends. Hence, hairpin-uridylation may serve as a barrier for the de novo creation of miRNAs in Drosophila.
ORGANISM(S): Drosophila melanogaster
PROVIDER: GSE67646 | GEO | 2015/10/19
SECONDARY ACCESSION(S): PRJNA280530
REPOSITORIES: GEO
ACCESS DATA