Deregulated pulmonary growth hormones after intrauterine smoke exposure
Ontology highlight
ABSTRACT: Background: In utero smoke exposure is a recognized risk factor for impaired lung function development and a significant risk factor for airway disease. Despite intensive anti-tobacco campaigns the prevalence of smoking pregnant women has remained high requiring additional strategies to protect the offspring’s lung. To achieve this goal, it is critical to understand the mechanisms how disease risks are established in early life. Objective: To develop an animal model that recapitulates clinical findings in prenatally exposed children to allow the investigation of early molecular changes in the lung. Methods: Pregnant mice were exposed to active smoking from gestational day (GD) 2.5 until caesarean section or spontaneous delivery. After careful maternal characterization, we monitored weight development, lung function, and airway remodeling in offspring. mRNA/miRNA arrays were performed in fetal lungs (GD18.5), followed by network analyses, qPCR and histone analyses.
Project description:Background: In utero smoke exposure is a recognized risk factor for impaired lung function development and a significant risk factor for airway disease. Despite intensive anti-tobacco campaigns the prevalence of smoking pregnant women has remained high requiring additional strategies to protect the offspring’s lung. To achieve this goal, it is critical to understand the mechanisms how disease risks are established in early life. Objective: To develop an animal model that recapitulates clinical findings in prenatally exposed children to allow the investigation of early molecular changes in the lung. Methods: Pregnant mice were exposed to active smoking from gestational day (GD) 2.5 until caesarean section or spontaneous delivery. After careful maternal characterization, we monitored weight development, lung function, and airway remodeling in offspring. mRNA/miRNA arrays were performed in fetal lungs (GD18.5), followed by network analyses, qPCR and histone analyses.
Project description:Rationale: Even after quitting smoking, the risk of the development of chronic obstructive pulmonary disease (COPD) and lung cancer remains significantly higher compared to never-smokers. Objectives: Based on the knowledge that COPD and most lung cancers start in the small airway epithelium (SAE), we hypothesized that smoking modulates miRNA expression in the SAE linked to the pathogenesis of smoking-induced airway disease, and that some of these changes persist after smoking cessation. Methods: SAE was collected from 10th to 12th order bronchi using fiberoptic bronchoscopy. Affymetrix miRNA 2.0 arrays were used to assess miRNA expression in the SAE from 10 healthy never-smokers and 10 healthy smokers, before and after they quit for 3 months. Smoking status was determined by urine nicotine and cotinine measurement. Results: There were significant differences in the expression of 34 miRNAs between healthy smokers and healthy never-smokers (p<0.01, fold-change >1.5), with functions associated with lung development, airway epithelium differentiation, inflammation and cancer. After quitting smoking for 3 months, 12 out of the 34 miRNAs did not return to normal levels, with Wnt/β-catenin signaling pathway the top enriched pathway of the target genes of the persistent deregulated miRNAs. Conclusions: In the context that many of these persistent smoking-dependent miRNAs are associated with differentiation, inflammation diseases or lung cancer, it is likely that persistent smoking-related changes in small airway epithelium miRNAs play a role in the subsequent development of these disorders. MicroRNA profiling identified 34 miRNAs up-regulated by cigarette smoking in human small airway epithelium. Even after quitting smoking for 3 months, 12 miRNAs didnât return to normal level.
Project description:Background: Healthy individuals exposed to low levels of cigarette smoke have a decrement in lung function and higher risk for lung disease compared to unexposed individuals. We hypothesized that healthy individuals exposed to low levels of tobacco smoke must have biologic changes in the small airway epithelium compared to healthy unexposed individuals. Methods: Small airway epithelium was obtained by bronchoscopy from 121 individuals; microarrays assessed genome wide gene expression, and urine nicotine and cotinine were used to categorized subjects as “nonsmokers,” “active smokers,” and “low exposure.” The gene expression data was used to determine the threshold and ID50 of urine nicotine and cotinine at which the small airway epithelium showed abnormal responses. Results: There was no threshold of urine nicotine without an abnormal small airway epithelial response, and only a slightly above detectable threshold abnormal response for cotinine. The nicotine ID50 for nicotine was 25 ng/ml and cotinine 104 ng/ml. Conclusions: The small airway epithelium detects and responds to low levels of tobacco smoke with transcriptome modifications. This provides biologic correlates of epidemiologic studies linking low level tobacco smoke exposure to lung health risk, health, identifies genes in the lung cells most sensitive to tobacco smoke and defines thresholds at the lung epithelium responds to inhaled tobacco smoke. Affymetrix arrays were used to assess the gene expression data of smoking-responsive genes in the in small airway epithelium obtained by fiberoptic bronchoscopy of 48 healthy non-smokers (non-smoker or Nsaets), 65 healthy smokers (smoker), 7 symptomatic smokers (SYMs) and a healthy occasional smoker (OcSs). YSB and LO contributed equally to the study.
Project description:Rationale: Genome-wide association studies (GWAS) and candidate gene studies have identified a number of loci linked to susceptibility of chronic obstructive pulmonary disease (COPD), a smoking-related disorder that originates in the airway epithelium. Objectives: Since airway basal cell (BC) stem/progenitor cells exhibit the earliest abnormalities associated with smoking (hyperplasia, squamous metaplasia), we hypothesized that smoker BC have a dysregulated transcriptome linked, in part, to known GWAS/candidate gene loci. Methods: Massive parallel RNA sequencing was used to compare the transcriptome of BC purified from the airway epithelium of healthy nonsmokers (n=10) and smokers (n=7). The chromosomal location of the differentially expressed genes was compared to loci identified by GWAS and candidate gene studies to confer risk for COPD. Measurements and Main Results: Smoker BC have 676 known genes differentially expressed compared to nonsmoker BC, dominated by smoking up-regulation. Strikingly, 166 (25%) of these genes are located on chromosome 19, with 13 localized to 19q13.2 (p<10-4 compared to chance), including TGFB1, LTBP4, EGLN2 and NFKBIB, genes associated with risk for COPD. Conclusions: These observations provide the first direct link of known genetic risks for smoking-related lung disease with the specific population of lung cells that undergoes the earliest changes associated with smoking. The human airway basal cell transcriptome of 7 smokers versus 10 nonsmokers was compared using massive parallel RNA sequencing (Illumina HiSeq 2000).
Project description:Rationale: Even after quitting smoking, the risk of the development of chronic obstructive pulmonary disease (COPD) and lung cancer remains significantly higher compared to never-smokers. Objectives: Based on the knowledge that COPD and most lung cancers start in the small airway epithelium (SAE), we hypothesized that smoking modulates miRNA expression in the SAE linked to the pathogenesis of smoking-induced airway disease, and that some of these changes persist after smoking cessation. Methods: SAE was collected from 10th to 12th order bronchi using fiberoptic bronchoscopy. Affymetrix miRNA 2.0 arrays were used to assess miRNA expression in the SAE from 10 healthy never-smokers and 10 healthy smokers, before and after they quit for 3 months. Smoking status was determined by urine nicotine and cotinine measurement. Results: There were significant differences in the expression of 34 miRNAs between healthy smokers and healthy never-smokers (p<0.01, fold-change >1.5), with functions associated with lung development, airway epithelium differentiation, inflammation and cancer. After quitting smoking for 3 months, 12 out of the 34 miRNAs did not return to normal levels, with Wnt/β-catenin signaling pathway the top enriched pathway of the target genes of the persistent deregulated miRNAs. Conclusions: In the context that many of these persistent smoking-dependent miRNAs are associated with differentiation, inflammation diseases or lung cancer, it is likely that persistent smoking-related changes in small airway epithelium miRNAs play a role in the subsequent development of these disorders.
Project description:Prior microarray studies of smokers at high risk for lung cancer have demonstrated that heterogeneity in bronchial airway epithelial cell gene expression response to smoking can serve as an early diagnostic biomarker for lung cancer. This study examines the relationship between gene expression variation and genetic variation in a central molecular pathway (NRF2-mediated antioxidant response) associated with smoking exposure and lung cancer. We assessed global gene expression in histologically normal airway epithelial cells obtained at bronchoscopy from smokers who developed lung cancer (SC, n=20), smokers without lung cancer (SNC, n=24), and never smokers (NS, n=8). Functional enrichment showed that the NRF2-mediated antioxidant response pathway differed significantly among these groups. Keywords: Global mRNA expression profiling
Project description:Rationale: Genome-wide association studies (GWAS) and candidate gene studies have identified a number of loci linked to susceptibility of chronic obstructive pulmonary disease (COPD), a smoking-related disorder that originates in the airway epithelium. Objectives: Since airway basal cell (BC) stem/progenitor cells exhibit the earliest abnormalities associated with smoking (hyperplasia, squamous metaplasia), we hypothesized that smoker BC have a dysregulated transcriptome linked, in part, to known GWAS/candidate gene loci. Methods: Massive parallel RNA sequencing was used to compare the transcriptome of BC purified from the airway epithelium of healthy nonsmokers (n=10) and smokers (n=7). The chromosomal location of the differentially expressed genes was compared to loci identified by GWAS and candidate gene studies to confer risk for COPD. Measurements and Main Results: Smoker BC have 676 known genes differentially expressed compared to nonsmoker BC, dominated by smoking up-regulation. Strikingly, 166 (25%) of these genes are located on chromosome 19, with 13 localized to 19q13.2 (p<10-4 compared to chance), including TGFB1, LTBP4, EGLN2 and NFKBIB, genes associated with risk for COPD. Conclusions: These observations provide the first direct link of known genetic risks for smoking-related lung disease with the specific population of lung cells that undergoes the earliest changes associated with smoking.
Project description:Disparate Oxidant-related Gene Expression of Human Small Airway Epithelium Compared to Autologous Alveolar Macrophages in Response to the In Vivo Oxidant Stress of Cigarette Smoking The oxidant burden of cigarette smoking induces lung cell dysfunction, and play a significant role in the pathogenesis of lung disease. Two cell populations directly exposed to the oxidants in cigarette smoke are the small airway epithelium and alveolar macrophages. Of these, the epithelium appears to be more vulnerable to smoking, becoming disordered in differentiation, repair and function, while alveolar macrophages become activated, without becoming diseased. In this context, we asked: for the same individuals, what is the baseline trancriptome of oxidant-related genes in small airway epithelium compared to alveolar macrophages and do the responses of the transcriptome of these 2 cell populations differ substantially to inhaled cigarette smoke? To address these questions we used microarray gene expression and TaqMan analysis to assess the gene expression profile of known oxidant-related genes in paired samples recovered by bronchoscopy from small airway epithelium and alveolar macrophages from the same healthy nonsmokers and normal smokers. Of the 155 oxidant-related genes surveyed, 122 (77%) were expressed in both cell populations in nonsmokers. However, of the genes expressed by both cell populations, oxidant related gene expression levels were higher in alveolar macrophages (67 genes, 43%) than small airway epithelium (37 genes, 24%). There were more oxidant-related genes uniquely expressed in the small airway epithelium (17%), than in alveolar macrophages (5%). In healthy smokers, the majority of oxidant-related genes were expressed in both cell populations, but there were marked differences in the numbers of oxidant-related genes that smoking up- or down-regulated. While smoking up-regulated 15 genes (10%) and down-regulated 7 genes (5%) in the small airway epithelium, smoking had far less effect on alveolar macrophages [only 4 (3%) genes up-regulated, and only 1 (0.6%) down-regulated]. Only a small number of smoking responsive oxidant-related genes overlapped between the two cell types (2 up-regulated, and no down-regulated genes). Consistent with this observation, pathway analysis of smoking-responsive genes in the small airway epithelium showed oxidant-related pathways dominated, but in alveolar macrophages immune-response pathways dominated. Thus, the responses of the oxidant-related transcriptome of cells with an identical genome and exposed to the same oxidant stress of cigarette smoking are very different, with responses of oxidant-related genes of alveolar macrophages far more subdued than that of small airway epithelium, consistent with the clinical observation that, while the small airway epithelium is vulnerable, alveolar macrophages are not "diseased" in response to the oxidant stress of cigarette smoking. Gene expression profiles of known oxidant-related genes in paired samples recovered by bronchoscopy from small airway epithelium and alveolar macrophages from the same healthy nonsmokers and normal smokers.
Project description:Prior microarray studies of smokers at high risk for lung cancer have demonstrated that heterogeneity in bronchial airway epithelial cell gene expression response to smoking can serve as an early diagnostic biomarker for lung cancer. This study examines the relationship between gene expression variation and genetic variation in a central molecular pathway (NRF2-mediated antioxidant response) associated with smoking exposure and lung cancer. We assessed global gene expression in histologically normal airway epithelial cells obtained at bronchoscopy from smokers who developed lung cancer (SC, n=20), smokers without lung cancer (SNC, n=24), and never smokers (NS, n=8). Functional enrichment showed that the NRF2-mediated antioxidant response pathway differed significantly among these groups. Keywords: Global mRNA expression profiling 21 total arrays (20 unique patients) run on total RNA obtained from Bronchial Epithelium of Smokers with Lung Cancer 30 total arrays (24 unique patients) run on total RNA obtained from Bronchial Epithelium of Smokers without Lung Cancer 9 total arrays (8 unique patients) run on total RNA obtained from Bronchial Epithelium of Never Smokers
Project description:Cigarette smoking is the leading cause of lung cancer worldwide. Carcinogens in smoke produced during the combustion of cigarette tobacco are responsible for airway epithelial changes underlying lung carcinogenesis. Reduction of harmful constituents by heating rather than combusting tobacco would be a sound strategy to reduce the risk for lung cancer. In this study we characterized the functional and molecular changes during long-term treatment of human bronchial epithelial cells with total particulate matter (TPM) from a new candidate modified risk tobacco product (cMRTP), the tobacco heated system 2.2 (THS2.2) in comparison with TPM from combustible 3R4F reference cigarettes.