Project description:In this study, we compared microRNA (miRNA) profiles of salivary exosomes of patients with oral lichen planus with those of healthy controls. Saliva samples from 16 patients with oral lichen planus and 8 healthy controls were divided into 2 sets and were examined by performing miRNA microarray analysis.
Project description:In this study, we compared microRNA (miRNA) profiles of salivary exosomes of patients with oral lichen planus with those of healthy controls. Saliva samples from 16 patients with oral lichen planus and 8 healthy controls were divided into 2 sets and were examined by performing miRNA microarray analysis.
Project description:In this study, we compared microRNA (miRNA) profiles of salivary exosomes of patients with oral lichen planus with those of healthy controls. Saliva samples from 16 patients with oral lichen planus and 8 healthy controls were divided into 2 sets and were examined by performing miRNA microarray analysis. Examination of 8 oral lichen planus patients and 4 healthy controls. Each patient and control represent pooled RNAs from salivary exosomes of 8 patients and 4 healthy controls, respectively. Please note that each set (i.e. set1 and set2) was analysed independently.
Project description:In this study, we compared microRNA (miRNA) profiles of salivary exosomes of patients with oral lichen planus with those of healthy controls. Saliva samples from 16 patients with oral lichen planus and 8 healthy controls were divided into 2 sets and were examined by performing miRNA microarray analysis. Examination of 8 oral lichen planus patients and 4 healthy controls. Each patient and control represent pooled RNAs from salivary exosomes of 8 patients and 4 healthy controls, respectively. Please note that each set (i.e. set1 and set2) was analysed independently.
Project description:Oral lichen planus (OLP) is a common chronic inflammatory autoimmune disease with unclear etiology. The aim of the present study was to identify the expression profiles of circulating exosomal miRNAs, which have been shown to be potent stimulators of inflammatory and immune responses, in OLP patients. Plasma exosomes were isolated from the patients and healthy individuals, and RAE scoring system was used to evaluate the severity of OLP. Differentially deregulated exosomal miRNAs associated with inflammatory response and autoimmunity in OLP were identified by miScript® miRNA PCR Array, and the results were confirmed by RT-PCR. The relationship between exosomal miRNAs and RAE scores was then analyzed, and bioinformatics analysis was used to predict the target genes and pathways of the differentially expressed exosomal miRNAs. Expression profiling showed that circulating exosomal miR-34a-5p and miR-130b-3p were upregulated, while miR-301b-3p was downregulated in OLP patients. Exosomal miR-34a-5p was positively correlated with the severity of OLP. Bioinformatics analysis revealed that the target genes of miR-34a-5p were mainly involved in regulation of gene expression, cell communication, signaling, and metabolic process, and modulated OLP progression through the PI3K/Akt signaling pathway. In conclusion, circulating exosomal miR-34a-5p could be a potential biomarker for evaluating the severity of OLP.
Project description:ObjectivesOral lichen planus (OLP) is an autoimmune disease with unknown etiology. Many OLP patients complain of xerostomia, and studies are still ongoing to find the reason for this manifestation. Aquaporin 5 has been expressed in salivary glands, and its physiological significance in transferring water as transcellular is properly identified. In this study, for the first time, we have investigated the serum and salivary levels of aquaporin 5 (as a salivary gland biomarker) in oral lichen planus patients with xerostomia.Material and methodsThirty patients with OLP and xerostomia and 30 healthy individuals were chosen. The flow of stimulatory and non-stimulatory saliva was calculated, and the serums, in addition to salivary levels of aquaporin 5, were determined.ResultsThe level of Aquaporin 5 in serum and its output in stimulatory, and non-stimulatory saliva were significantly decreased, the stimulatory and non-stimulatory saliva flow was reduced, and the degree of xerostomia was significantly higher in the OLP group.ConclusionsAquaporin 5 is implicated in OLP patients in several ways such as impaired salivary functioning, xerostomia or dry mouth, diminished repair ability of the mucosal lesion, increased apoptosis, and probable carcinogenesis in this premalignant lesion.
Project description:Several studies have explored the origin and development mechanism of oral lichen planus (OLP) with limited attention to the role of bacteria in the progression of this common oral disease. Here we utilized MiSeq sequencing of 16S rRNA gene amplicons to identify complex oral microbiota associated with OLP from saliva samples of two subtypes (reticular and erosive) of OLP patients and healthy controls. Our analyses indicated that the overall structure of the salivary microbiome was not significantly affected by disease status. However, we did observe evident variations in abundance for several taxonomic groups in OLP. Porphyromonas and Solobacterium showed significantly higher relative abundances, whereas Haemophilus, Corynebacterium, Cellulosimicrobium and Campylobacter showed lower abundances in OLP patients, as compared with healthy controls. In addition, we explored specific microbial co-occurrence patterns in OLP, and revealed significantly fewer linkers of Streptococcus comprising species in erosive OLP. Furthermore, the disease severity and immune dysregulation were also genus-associated, including with Porphyromonas that correlated to disease scores and salivary levels of interleukin (IL)-17 and IL-23. Overall, this study provides a general description of oral microbiome in OLP, and it will be useful for further investigation of their potential roles in the initiation and immune modulation of OLP.