Discovery and profiling of small RNAs responsive to stress conditions in the plant pathogen Pectobacterium atrosepticum
Ontology highlight
ABSTRACT: Small RNAs (sRNAs) have emerged as important regulatory molecules and have been studied in several bacteria. However, to date, there have been no whole-transcriptome studies on sRNAs in any of the Soft Rot Enterobacteriaceae (SRE) group of pathogens. Although the main ecological niches for these pathogens are plants, a significant part of their life cycle is undertaken outside their host within the adverse soil environment. However, the mechanisms of SRE adaptation to this harsh nutrient-deficient environment are poorly understood. In the study reported herein, by using strand-specific RNA-seq analysis and in silico sRNA predictions, we describe the sRNA pool of Pectobacterium atrosepticum and reveal numerous sRNA candidates, including those that are induced during starvation-activated stress response. Consequently, strand-specific RNA-seq enabled detection of 137 sRNAs and sRNA candidates under starvation conditions; 25 of these sRNAs were predicted for this bacterium in silico. Functional annotations were computationally assigned to 68 sRNAs. The expression of sRNAs in P. atrosepticum was compared under growth-promoting and starvation conditions: 63 sRNAs were differentially expressed with 57 sRNAs up-regulated under nutrient-deficient conditions. Conservation analysis using BLAST (e-value < 0.001) showed that most of the identified sRNAs are conserved within the SRE. Subsequently, we identified 9 novel sRNAs within the P. atrosepticum genome. A large number of these sRNAs is starvation-induced, suggesting their role in bacterial adaptive response. Finally, this work provides a basis for future experimental characterization and validation of sRNAs in plant pathogens.
ORGANISM(S): Pectobacterium atrosepticum SCRI1043
PROVIDER: GSE68547 | GEO | 2016/01/26
SECONDARY ACCESSION(S): PRJNA283104
REPOSITORIES: GEO
ACCESS DATA