ABSTRACT: Normal human spermatogenesis concludes with the formation of large numbers of morphologically well developed spermatozoa. While transcriptionally quiescent these cells carry an RNA payload that reflects the final spermiogenic phase of transcription. We report here the spermatozoal transcript profiles characteristic of normally fertile individuals and infertile males suffering from a consistent and severe teratozoospermia in which under 4% of spermatozoa are morphologically normal. RNA was extracted from the purified sperm cells of ejaculate and hybridized to Affymetrix U133 (v2) Microarrays. Keywords: disease state analysis
Project description:Normal human spermatogenesis concludes with the formation of large numbers of morphologically well developed spermatozoa. While transcriptionally quiescent these cells carry an RNA payload that reflects the final spermiogenic phase of transcription. We report here the spermatozoal transcript profiles characteristic of normally fertile individuals and infertile males suffering from a consistent and severe teratozoospermia in which under 4% of spermatozoa are morphologically normal. RNA was extracted from the purified sperm cells of ejaculate and hybridized to Illumina WG6 Microarrays. Keywords: disease state analysis
Project description:Normal human spermatogenesis concludes with the formation of large numbers of morphologically well developed spermatozoa. While transcriptionally quiescent these cells carry an RNA payload that reflects the final spermiogenic phase of transcription. We report here the spermatozoal transcript profiles characteristic of normally fertile individuals and infertile males suffering from a consistent and severe teratozoospermia in which under 4% of spermatozoa are morphologically normal. RNA was extracted from the purified sperm cells of ejaculate and hybridized to Illumina WG ref8 Microarrays. Keywords: disease state analysis
Project description:Normal human spermatogenesis concludes with the formation of large numbers of morphologically well developed spermatozoa. While transcriptionally quiescent these cells carry an RNA payload that reflects the final spermiogenic phase of transcription. We report here the spermatozoal transcript profiles characteristic of normally fertile individuals and infertile males suffering from a consistent and severe teratozoospermia in which under 4% of spermatozoa are morphologically normal. RNA was extracted from the purified sperm cells of ejaculate and hybridized to Affymetrix U133 (v2) Microarrays. Spermatozoal RNAs were prepared from the semen samples of 21 individuals. An asymmetric dual block design was adopted with biological replicates in both blocks. 13 semen samples were assessed from normally fertile males who had fathered at least one child. 8 semen samples were assessed from infertile individuals with a severe and consistent heterogeneous teratozoospermia who showed no other abnormal semen parameters.
Project description:Numerous studies have shown the potential of spermatozoal RNAs to delineate failures of spermatogenic pathways in infertile samples. However, the RNA contribution of normal fertile samples still needs to be established in relation to transcripts consistently present in human spermatozoa. We report here the spermatozoal transcript profiles characteristic of 24 normally fertile individuals. RNA was extracted from the purified sperm cells of ejaculate and hybridized to Illumina Human-8 BeadChip Microarrays
Project description:It is now well established that mature mammalian spermatozoa carry a population of mRNA molecules, at least some of which are transferred to the oocyte at fertilisation. However, the function of the sperm transcriptome remains largely unclear. To shed light on the evolutionary conservation of this feature of sperm biology, we analysed highly purified populations of mature sperm from the fruitfly, Drosophila melanogaster. As with mammalian sperm, we found a consistently enriched population of mRNA molecules that are not likely to be derived from contaminating somatic cells or immature sperm. Using tagged transcripts for three of the spermatozoal mRNAs, we demonstrate that they are transferred to the oocyte at fertilisation and can be detected at least until the onset of zygotic gene expression. We find a remarkable conservation in the functional annotations associated with fly and human spermatozoal mRNAs, in particular a highly significant enrichment for transcripts encoding Ribosomal Proteins. The identification of a conserved set of spermatozoal transcripts opens the possibility of using the power of Drosophila genetics to address the function of this enigmatic class of molecules.
Project description:It is now well established that mature mammalian spermatozoa carry a population of mRNA molecules, at least some of which are transferred to the oocyte at fertilisation. However, the function of the sperm transcriptome remains largely unclear. To shed light on the evolutionary conservation of this feature of sperm biology, we analysed highly purified populations of mature sperm from the fruitfly, Drosophila melanogaster. As with mammalian sperm, we found a consistently enriched population of mRNA molecules that are not likely to be derived from contaminating somatic cells or immature sperm. Using tagged transcripts for three of the spermatozoal mRNAs, we demonstrate that they are transferred to the oocyte at fertilisation and can be detected at least until the onset of zygotic gene expression. We find a remarkable conservation in the functional annotations associated with fly and human spermatozoal mRNAs, in particular a highly significant enrichment for transcripts encoding Ribosomal Proteins. The identification of a conserved set of spermatozoal transcripts opens the possibility of using the power of Drosophila genetics to address the function of this enigmatic class of molecules. RNA extracted from three biological replicates of purified sperm (Sperm rep1, Sperm rep2 and Sperm rep3) was used as a template for oligo-dT-primed reverse transcription, amplification, labelling of dye swapped technical replicates and hybridisation to long oligonucleotides microarrays. As a control, RNA from two biological replicates of dissected adult testis plus accessory glands (Testis_rep1, Testis_rep2) was amplified, labelled (dye-swap technical replicate) and hybridised to similar arrays. To help with the spot-finding of the arrays genomic DNA was co-hybridised in some cases (this genomic DNA data was excluded from further analysis). Genes with an intensity level below 200 in at least one channel across the Sperm or Testis set were removed (5579 transcripts present in all three sperm replicates, 5358 transcripts from the testis/accessory gland samples and 4295 transcripts common to both data sets). Then the quantile normalisation was independently applied to the Sperm replicate samples and Testis replicates.
Project description:During mammalian spermiogenesis, the majority of the nucleosomes packaging the male haploid genome are replaced by protamines to produce a highly compact chromatin architecture that is critical to male fertility. We have carried out a genomewide survey of human spermatozoal chromatin using both a salt and micrococal nuclease approach to characterise the DNA sequences that remain packaged by histones.
Project description:During mammalian spermiogenesis, the majority of the nucleosomes packaging the male haploid genome are replaced by protamines to produce a highly compact chromatin architecture that is critical to male fertility. We have carried out a genomewide survey of murine spermatozoal chromatin using a micrococal nuclease approach to characterise the DNA sequences that remain packaged by histones.
Project description:MiR-544 was inhibited by either a miR-544 antagomir or compound 1 under hypoxic conditions in MDA-MB-231 cells U133 Plus 2.0 microarray was utilized to examine the specificity of 1 for miR-544. 3 MDA-MB-231 samples treated with a miR-544 antagomir or compound 1 were subjected to hypoxia for a period of 5 days. After 5 days, samples were pooled and subjected to gene level microarray analysis.
Project description:Epigenetic drugs actively altering the epigenome of tumours have been developed for use in anti-cancer therapies. However, these drugs could potentially also affect the DNA methylome of spermatozoa that seems to be essential for male fertility. Here, we analysed possible direct and transgenerational effects of the epigenetic drug decitabine on the DNA methylome of spermatozoa. Our analysis revealed the absence of gross differences between the spermatozoal methylome of decitabine treated and untreated animals as well as between their F3 generations. Interestingly, the methylomes of spermatozoa from the selected mice of the F3-generations were also highly similar to the analysed parental samples.