CaArray_geral-00143: An estrogen receptor-negative breast cancer subset characterized by a hormonally regulated transcriptional program and response to androgen
Ontology highlight
ABSTRACT: Clinical heterogeneity of esrtrogen receptor-negative, progesterone receptor-negative [ER(-)/PR(-)] breast cancer (BC) suggests biological heterogeneity. We performed gene expression analysis of primary BCs and BC cell lines to identify the underlying biology of ER(-)/PR(-) disease, define subsets, and identify potential therapeutic targets.
Project description:Clinical heterogeneity of esrtrogen receptor-negative, progesterone receptor-negative [ER(-)/PR(-)] breast cancer (BC) suggests biological heterogeneity. We performed gene expression analysis of primary BCs and BC cell lines to identify the underlying biology of ER(-)/PR(-) disease, define subsets, and identify potential therapeutic targets. geral-00143 Assay Type: Gene Expression Provider: Affymetrix Array Designs: HG-U133A Organism: Homo sapiens (ncbitax) Material Types: cRNA, cell, OrganismPart, whole_organism, total_RNA Disease States: breast carcinomas
Project description:Estrogen receptor (ER) signaling–dependent cancer cell growth is one of the major features of ER-positive breast cancer (BC). Inhibition of ER function is a standard and effective treatment for ER-positive tumors; however, ~20% of patients with ER-positive BC experience early or late recurrence. In this study, we examined intertumor heterogeneity from an epigenetic perspective based on the hypothesis that the intrinsic difference in epigenetic states around ER signaling pathway underlies endocrine therapy resistance. We profiled chromatin accessibility data from 42 BC samples, including 35 ER-positive human epidermal growth factor receptor 2 (HER2)-negative and 7 triple-negative tumors, identifying a subgroup of ER-positive BCs with a distinctive chromatin accessibility pattern including reduced accessibility to ER-responsive elements (EREs). The same subgroup was also observed in The Cancer Genome Atlas BC cohort. Despite the reduced accessibility to EREs, the expression of ER and potential ER target genes were not decreased in these tumors. Our findings highlight the existence of a subset of ER-positive BCs with unchanged ER expression but reduced EREs accessibility that cannot be distinguished by conventional immunostaining for ER. Future studies should determine whether these tumors are associated with resistance to endocrine therapy.
Project description:Breast cancer is a heterogeneous disease classified into 3 major subtypes based on the presence or absence of molecular markers for oestrogen receptors (ER), progesterone receptors (PR) and human epidermal growth factor-2 (Her2) . Hormone receptor-positive BC (ER+, PR+ and Her-2-), accounts for approximately 70% of patients. Patients with ER- BC account for approximately 30 % of all cases and commonly have a worse prognosis than ER+ patients (9). However, a significant proportion of ER- cases have good outcomes and could potentially benefit from a less aggressive therapy. Triple negative breast cancer (TNBC, ER-, PR- and Her-2-) accounts for approximately 15% of breast cancers and has the poorest outcomes. An hypoxic microenvironment is an important intrinsic component of solid tumours that can result in rapid proliferation of cancer cells and is associated with the lack of oxgyen and abnormal tumour blood vessels. Hypoxia stimulates the hypoxia inducible factor-1α (HIF-1α) that transactivates genes associated with angiogenesis, tumour growth, metastasis, metabolic reprogramming, and treatment resistance. HIF-1α is recognised to induce the expression of carbonic anhydrase IX (CAIX), an enzyme that has been attributed a central role in pH regulation and cancer progression and is particularly pronounced in peri necrotic tumour areas, high-grade BCs. The adaption to hypoxia is governed by multiple transcriptional and post-transcriptional changes in gene expression. Up to 1.5 % of the human genome is estimated to be transcriptionally responsive to hypoxia. Genes and pathways which have been identified as being responsive to hypoxia may have the potential to be used as prognostic or predictive markers, and furthermore, can help identify novel therapeutic targets. The aim of the present study was to gain a better understanding of the transcriptomic and protein pathways associated with CAIX in ER- BC to identify potential therapeutic targets against this aggressive phenotype.
Project description:15-25% of breast cancers (BC) show ERBB2-amplification and overexpression of the encoded ERBB2 tyrosine kinase receptor. They are associated with a poor prognosis but can benefit from targeted therapy. A better knowledge of these BCs may help understand their behavior and design new therapeutic strategies. In this study, we defined the high resolution genome and gene expression profiles of 54 ERBB2-amplified BCs using 244K oligonucleotide array-comparative genomic hybridization and whole-genome DNA microarrays. We first identified the ERBB2-C17orf37-GRB7 genomic segment as the minimal common amplicon, and CRKRS and IKZF3 as the most frequent centromeric and telomeric amplicon borders, respectively. Second, we identified 17 genome regions affected by copy number aberration (CNA). The expression of 37 genes of these regions was deregulated. Third, two types of heterogeneity were observed in ERBB2-amplified BCs. The genomic profiles of estrogen receptor-postive (ER+) and negative (ER-) ERBB2-amplified BCs were different. The WNT/ß-catenin signaling pathway was involved in ER- ERBB2-amplified BCs, and PVT1 and TRPS1 were candidate oncogenes associated with ER+ ERBB2-amplified BCs. The size of the ERBB2-amplicon was different in inflammatory (IBC) and non inflammatory BCs. ERBB2-amplified IBCs were characterized by the downregulated and upregulated mRNA expression of ten and two genes in proportion to CNA, respectively. We have shown that ERBB2 BCs are heterogeneous and identified genomic features that may be useful in the design of therapeutical strategies
Project description:15-25% of breast cancers (BC) show ERBB2-amplification and overexpression of the encoded ERBB2 tyrosine kinase receptor. They are associated with a poor prognosis but can benefit from targeted therapy. A better knowledge of these BCs may help understand their behavior and design new therapeutic strategies. In this study, we defined the high resolution genome and gene expression profiles of 54 ERBB2-amplified BCs using 244K oligonucleotide array-comparative genomic hybridization and whole-genome DNA microarrays. We first identified the ERBB2-C17orf37-GRB7 genomic segment as the minimal common amplicon, and CRKRS and IKZF3 as the most frequent centromeric and telomeric amplicon borders, respectively. Second, we identified 17 genome regions affected by copy number aberration (CNA). The expression of 37 genes of these regions was deregulated. Third, two types of heterogeneity were observed in ERBB2-amplified BCs. The genomic profiles of estrogen receptor-postive (ER+) and negative (ER-) ERBB2-amplified BCs were different. The WNT/Ã?-catenin signaling pathway was involved in ER- ERBB2-amplified BCs, and PVT1 and TRPS1 were candidate oncogenes associated with ER+ ERBB2-amplified BCs. The size of the ERBB2-amplicon was different in inflammatory (IBC) and non inflammatory BCs. ERBB2-amplified IBCs were characterized by the downregulated and upregulated mRNA expression of ten and two genes in proportion to CNA, respectively. We have shown that ERBB2 BCs are heterogeneous and identified genomic features that may be useful in the design of therapeutical strategies Tumor tissues were collected from 340 patients with invasive adenocarcinoma who underwent initial surgery at the Institut Paoli-Calmettes (Marseilles, France) between 1987 and 2007 (from a cohort of 2,175 patients with frozen tumor sample) and from a series of 91 Tunisian T4d tumors (TNM, UICC) treated between 1994 and 1998 at the Salah Azaiz Institute (Tunis, Tunisia). Each patient gave informed consent and the study was approved by our institutional review board. Samples were macrodissected and frozen in liquid nitrogen within 30 minutes of removal. Genomic imbalances were determined by aCGH using 244K CGH oligonucleotide microarrays (Hu-244A, Agilent Technologies). Gene expression data of 51 of the 54 BCs and 4 normal breast (NB) samples (NB1, NB2, NB3 and NB4, representing samples from 4 women and 3 commercial pools of respectively 1, 2 and 4 normal breast RNA, Clontech, Palo Alto, CA) were quantified by using whole-genome DNA microarrays (HG-U133 plus 2.0, Affymetrix).
Project description:Breast cancer is the most frequent cancer in women and consists of heterogeneous types of tumours that are classified into different histological and molecular subtypes1-3. Pik3ca and p53 are the two most frequently mutated genes and are associated with different types of human breast cancers4. The cellular origin and the mechanisms leading to Pik3ca-induced tumour heterogeneity remain unknown. Here, we used a genetic approach in mice to define the cellular origin of Pik3ca-derived tumours and its impact on tumour heterogeneity. Surprisingly, oncogenic Pik3ca-H1047R expression at physiological levels5 in basal cells (BCs) using K5CREERT2 induced the formation of luminal ER+PR+ tumours, while its expression in luminal cells (LCs) using K8CREERT2 gave rise to luminal ER+PR+ tumours or basal-like ER-PR- tumours. Concomitant deletion of p53 and expression of Pik3ca-H1047R accelerated tumour development and induced more aggressive mammary tumours. Interestingly, expression of Pik3ca-H1047R in unipotent BCs gave rise to luminal-like cells, while its expression in unipotent LCs gave rise to basal-like cells before progressing into invasive tumours. Transcriptional profiling of cells that have undergone cell fate transition upon Pik3ca-H1047R expression in unipotent progenitors demonstrate a profound oncogene-induced reprogramming of these newly formed cells and identified gene signatures, characteristic of the different cell fate switches that occur upon Pik3ca-H1047R expression in BC and LCs, which correlated with the cell of origin, tumour type and different clinical outcomes. Altogether our study identifies the cellular origin of Pik3ca-induced tumours and reveals that oncogenic Pik3ca-H1047R activates a multipotent genetic program in normally lineage-restricted populations at the early stage of tumour initiation, setting the stage for future intratumoural heterogeneity. These results have important implications for our understanding of the mechanisms controlling tumour heterogeneity and the development of new strategies to block PIK3CA breast cancer initiation. Luminal and basal cells, or tumour cells, from mice in which expression of PIK3CA-H1047R and YFP (and in some conditions loss of p53) was targeted in basal cells using K5CREERT2 or in luminal cells using K8CREERT2 were FACS isolated and RNA was extracted before being hybridized Affymetrix microarrays.
Project description:Breast cancer is the most frequent cancer in women and consists of heterogeneous types of tumours that are classified into different histological and molecular subtypes1-3. Pik3ca and p53 are the two most frequently mutated genes and are associated with different types of human breast cancers4. The cellular origin and the mechanisms leading to Pik3ca-induced tumour heterogeneity remain unknown. Here, we used a genetic approach in mice to define the cellular origin of Pik3ca-derived tumours and its impact on tumour heterogeneity. Surprisingly, oncogenic Pik3ca-H1047R expression at physiological levels5 in basal cells (BCs) using K5CREERT2 induced the formation of luminal ER+PR+ tumours, while its expression in luminal cells (LCs) using K8CREERT2 gave rise to luminal ER+PR+ tumours or basal-like ER-PR- tumours. Concomitant deletion of p53 and expression of Pik3ca-H1047R accelerated tumour development and induced more aggressive mammary tumours. Interestingly, expression of Pik3ca-H1047R in unipotent BCs gave rise to luminal-like cells, while its expression in unipotent LCs gave rise to basal-like cells before progressing into invasive tumours. Transcriptional profiling of cells that have undergone cell fate transition upon Pik3ca-H1047R expression in unipotent progenitors demonstrate a profound oncogene-induced reprogramming of these newly formed cells and identified gene signatures, characteristic of the different cell fate switches that occur upon Pik3ca-H1047R expression in BC and LCs, which correlated with the cell of origin, tumour type and different clinical outcomes. Altogether our study identifies the cellular origin of Pik3ca-induced tumours and reveals that oncogenic Pik3ca-H1047R activates a multipotent genetic program in normally lineage-restricted populations at the early stage of tumour initiation, setting the stage for future intratumoural heterogeneity. These results have important implications for our understanding of the mechanisms controlling tumour heterogeneity and the development of new strategies to block PIK3CA breast cancer initiation.
Project description:HGU133+2.0 Microarray on TNBC cells (MDA-MB-231) treated for 4, 8, or 12h with vehicle, 100nM dexamethasone, 100nM Dex/100nM Mifepristone, or 100nM Dex/100nM CORT108297 Purpose: Although high glucocorticoid receptor (GR) expression in early-stage estrogen receptor (ER)-negative breast cancer (BC) is associated with shortened relapse-free survival (RFS), how associated GR transcriptional activity contributes to aggressive BC behavior is not well understood. Using potent GR antagonists and primary tumor gene expression data, we sought to identify a tumor-relevant gene signature based on GR activity that would be more predictive than GR expression alone. Design: Global gene expression and GR ChIP-sequencing were performed to identify GR-regulated genes inhibited by two chemically distinct GR antagonists, mifepristone and CORT108297. Differentially expressed genes from MDA-MB-231 cells were cross-evaluated with significantly expressed genes in GR-high versus GR-low ER-negative primary BCs. The resulting subset of GR targeted genes was analyzed in two independent ER-negative BC cohorts to derive and then validate the GR activity signature (GRsig). Results: Gene expression pathway analysis of glucocorticoid-regulated genes (inhibited by GR antagonism) revealed cell survival and invasion functions. GR ChIP-seq analysis demonstrated that GR antagonists decreased GR chromatin association for a subset of genes. A GRsig comprised of n=74 GR activation-associated genes (also reversed by GR antagonists) was derived from an adjuvant chemotherapy-treated Discovery cohort and found to predicted probability of relapse in a separate Validation cohort (HR=1.9; p= 0.012). Conclusions: The GRsig discovered herein identifies high-risk ER-negative/GR-positive BCs most likely to relapse despite administration of adjuvant chemotherapy. Because GR antagonism can reverse expression of these genes, we propose that addition of a GR antagonist to chemotherapy may improve outcome of these high-risk patients.
Project description:Analysis of MCF-7 cells treated for 4h with Ethanol, Estradiol (E2), Dexamethasone (Dex), or Estradiol + Dexamethasone (E2 + Dex) In estrogen receptor (ER)-negative breast cancer (BC), high tumor glucocorticoid receptor (GR) expression has been associated with a relatively poor outcome. In contrast, using a meta-analysis of several genomic datasets, here we find that tumor GR mRNA expression is associated with improved ER+ relapse-free survival (RFS) (independently of progesterone receptor (PR) expression). To understand the mechanism by which GR expression is associated with a better ER+ BC outcome, the global effect of GR-mediated transcriptional activation in ER+ BC cells was studied. Analysis of GR chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) in ER+/GR+ MCF-7 cells revealed that upon co-activation of GR and ER, GR chromatin association became enriched at proximal promoter regions. Furthermore, following ER activation, increased association of GR was observed at ER, FOXO, and AP1 response elements. In addition, it was determined that ER associated with GR response elements, suggesting that ER and GR interact in a complex. Co-activation of GR and ER resulted in increased expression (relative to ER activation alone) of transcripts that encode proteins promoting cellular differentiation (e.g. KDM4B, VDR) and inhibiting Wnt-signaling (IGFBP4). Finally, expression of these individual pro-differentiation genes was associated with significantly improved RFS in ER+ BC patients. Together, these data demonstrate that the co-expression and subsequent activity of tumor cell GR and ER contribute to the less aggressive natural history of early-stage BC by coordinating the altered expression of genes favoring differentiation. Four treatment samples (Vehicle V, Dex D, E2, or Dex+E2). Three biological replicate experiments per sample. Vehicle sample is Ethanol control.
Project description:Estrogen receptor α (ER-α) is a major driver of breast cancer (BC), being expressed in 75% of all BC cases. Agents such as tamoxifen are used to block ER-α activity and interfere with its down-stream oncogenic singling. However, a major problem associated with tamoxifen is the emergence of resistance. Resistant BC is often associated with aggressive relapse, metastasis, and high mortality rates of 80%. A key mechanism for development of resistance is activation of EGFR/HER2/HER3 signaling pathways and other hormone receptors (androgen receptor (AR), progesterone receptor (PR), prolactin receptors (PRL-R)) that can intrinsically activate ER-α. This study investigated a novel class of thiosemicarbazone anti-cancer agents, namely Dp44mT and DpC, on the expression and activation between major BC hormonal receptors, their co-factors and key pathways involved in resistance in ER-α-positive BC using RNA sequencing, immunoblotting and confocal microscopy and an in vivo orthotopic BC model. For the first time, we demonstrate that DpC and Dp44mT markedly reduce the expression of ER-α, AR, PR and PRL-R by inducing their proteasomal degradation. Further, these agents also inhibited EGFR, HER2 and HER3 activation in ER-α-positive BC cells, suggesting their potential ability to overcome development of resistance. Importantly, expression of key co-factors that promote ER-α-transcriptional activity, including SRC3, c-Myc, SP1, and c-Src, were also decreased by these agents. This study demonstrates for the first time the multi-axial inhibitory effects of the novel DpT agents in ER-positive BC invitro and in vivo. We demonstrate that Dp44mT and DpC decrease ER-α expression, transcriptional activity, and promote its proteasomal degradation. This study also demonstrated the ability of the DpT agents in inhibiting RTKs and key oncogenic pathways that are well established to promote endocrine resistance. Hence, for the first time we demonstrate that Dp44mT and DpC may be a promising therapeutic approach to treat ER-positive BC and to overcome resistance to conventional BC therapies.