Project description:Atherosclerosis development is largely driven by old age and lifestyle factors, such as diet, physical activity and smoking. Microarray analysis of skeletal muscle gene expression was performed on young (14 weeks) and aged (49-52 weeks) C57BL/6 wild-type (WT) and atherosclerosis-prone ApoE-/- mice, which were subjected to physical endurance exercise on a treadmill for 5 weeks, with or without a high fat diet.
Project description:Hypercholesterolemic APOE-deficient mice are a widely used experimental model of atherosclerosis and increased generation of reactive oxygen species (ROS) is a prominent feature of atherosclerosis development. To study the impact of ROS on atherogenesis, we treated APOE-deficient mice for 7 months with the antioxidant vitamin E (2000 IU/kg diet) and performed whole genome microarray gene expression profiling of aortic genes. Microarray gene expression profiling was performed of whole aortas isolated from vitamin E-treated APOE-deficient relative to untreated APOE-deficient mice with overt atherosclerosis, and nontransgenic B6 control mice. Microarray gene expression profiling revealed that vitamin E treatment prevented atherosclerosis-related gene expression changes of the aortic intima and media. Microarray gene expression profiling was performed of whole aortas isolated from APOE-deficient mice with atherosclerosis relative to vitamin E-treated APOE-deficient mice, and nontransgenic B6 control mice. Three study groups were analyzed, i.e. 8 months-old untreated APOE-deficient mice with overt atherosclerosis, age-matched APOE-deficient mice treated for 7 months with the antioxidant vitamin E (2000 IU/kd diet), and nontransgenic B6 control (C57BL/6J) mice. Two biological replicates were made of each group, and total RNA of three aortas was pooled for one gene chip. The study complements microarray study GSE19286.
Project description:MicroRNAs profile of circulating CD4+ T Cells in Aged Patients with Atherosclerosis Obliterans comparing healthy persons without symptoms or lesion associated with atherosclerosis.
Project description:To examine gene expression changes duging aging in polyploid and diploid hepatocytes, diploid and polyploid hepatocytes were sorted from young and aged multi-reporter mice and their gene expressions were analyzed by high-throughput RNA sequence.
Project description:To examine mononuclear cell gene expression profiles in patients with and without SLE and subsets with and without atherosclerosis Monocytes were obtained from 20 patients with SLE and 16 healthy controls and were in vitro differentiated into macrophages. Subjects also underwent laboratory and imaging studies of the coronary arteries, carotid arteries, and aorta to evaluate for subclinical atherosclerosis.
Project description:Hypercholesterolemic APOE-deficient mice are a widely used experimental model of atherosclerosis and increased generation of reactive oxygen species (ROS) is a prominent feature of atherosclerosis development. To study the impact of ROS on atherogenesis, we treated APOE-deficient mice for 7 months with the antioxidant vitamin E (2000 IU/kg diet) and performed whole genome microarray gene expression profiling of aortic genes. Microarray gene expression profiling was performed of whole aortas isolated from vitamin E-treated APOE-deficient relative to untreated APOE-deficient mice with overt atherosclerosis, and nontransgenic B6 control mice. Microarray gene expression profiling revealed that vitamin E treatment prevented atherosclerosis-related gene expression changes of the aortic intima and media.
Project description:T cells change substantially with age and are involved in atherosclerosis. Aging is the strongest clinical risk factor for atherosclerosis so we profiled T cells in young and aged mice prior to atherosclerosis (healthy) and in young and aged atherosclerotic mice (diseased).
Project description:This study compared gene expression in smooth muscle cells (SMCs) in atherosclerosis-prone and atherosclerosis-resistant aorta segments in 4 months old apolipoprotein E-deficient (apoE-/-) mice before plaque development. In a parallel experiment, both regions were compared in young C57Bl/6 mice. Aortas of 3 male and 3 female ApoE-/- mice were isolated, perfused with triton X-100 to remove endothelial cells and divided in an atherosclerosis-prone region (AA: ascending aorta, aortic arch and proximal 2 mm of thoracic aorta) and a resistant region (TA: central thoracic aorta, i.e. 6 mm distal from the proximal 2 mm). Microarray analysis (VIB-MAF) of pooled total RNA showed differential expression (>2-fold difference) for 244 genes. Up- or downregulation in the AA was observed for 186 and 58 genes respectively. Differential expression of 6 genes was confirmed using real-time PCR. The 201 genes that showed exclusively differential expression in apoE-/- mice were related to processes involved in atherosclerosis, such as cell adhesion, proliferation, differentiation, motility and death, lipid metabolism and immune responses. Furthermore, the transcription profile of the AA was in accordance with a more synthetic SMC phenotype. These results point to an altered transcriptome in SMCs in the aorta of apoE-/- mice at the atherosclerosis-prone location before actual lesion development. This suggests that SMCs, in addition to endothelial cells, can facilitate plaque formation at predilection sites. Experiment Overall Design: samples were hyrbidized in dye-swap.