Ets factors regulate neural stem cell depletion and gliogenesis in Ras pathway-driven glioma
Ontology highlight
ABSTRACT: As the list of putative driver mutations in glioma grows, we are just beginning toAs the list of putative driver mutations in glioma grows, we are just beginning to elucidate the effects of dysregulated developmental signaling pathways on the transformation of neural cells. We have employed a postnatal, mosaic, autochthonous, glioma model that captures the first hours and days of gliomagenesis in more resolution than conventional genetically engineered mouse models of cancer. We provide evidence that disruption of the Nf1-Ras pathway in the ventricular zone at multiple signaling nodes uniformly results in rapid neural stem cell depletion, progenitor hyperproliferation, and gliogenic lineage restriction. Abolishing Ets subfamily activity, which is upregulated downstream of Ras, rescues these phenotypes and blocks glioma initiation. Thus, the Nf1-Ras-Ets axis might be one of the select molecular pathways that are perturbed for initiation and maintenance in glioma.
ORGANISM(S): Mus musculus
PROVIDER: GSE69254 | GEO | 2015/05/28
SECONDARY ACCESSION(S): PRJNA285026
REPOSITORIES: GEO
ACCESS DATA