TRF2 Inhibition-Mediated Degradation Derepresses the Neuronal Differentiation Program
Ontology highlight
ABSTRACT: Telomere binding factor 2 (TRF2), is a protein that plays a major role in the maintenance of telomere integrity. In mitotic normal and transformed cells, TRF2 inhibition triggers a rapid telomere DNA damage response that results in cell senescence or apoptosis. Here we provide evidence that TRF2 plays a role suppressing neuronal differentiation. TRF2 interacts with the RE1-silencing transcription factor (REST) in nuclear PML protein-containing compartments of neuronal cells in vivo. Inhibition of TRF2 function with a dominant-negative form of TRF2 elicits a telomeric DNA damage response, and disrupts the TRF2-REST complex resulting in proteasomal degradation of REST. Overexpression of REST impairs the ability of DN-TRF2 to induce neuronal differentiation, indicating that enhanced degradation of REST is sufficient to account for the differentiation-inducing effect of DN-TRF2. REST degradation derepresses RE1-regulated genes (L1CAM, BDNF, b3-tubulin, syntaxin and others) resulting in morphological and functional differentiation of neurons. Our findings identify a novel interaction between the telomeric protein TRF2 and REST which regulates the molecular differentiation program of neurons. Keywords: transfection and molecular inhibition
ORGANISM(S): Homo sapiens
PROVIDER: GSE6983 | GEO | 2007/07/01
SECONDARY ACCESSION(S): PRJNA99295
REPOSITORIES: GEO
ACCESS DATA