Project description:Next-generation sequencing (NGS) was used to analyze gene expression in H. pylori CrdRS two-component system deletion strains. The goal of this study was to examine the role that the CrdRS two-component system plays in H. pylori gene expression through identification of regulon differences
Project description:UnlabelledStaphylococcus aureus is both a commensal and a pathogen of the human host. Survival in the host environment requires resistance to host-derived nitric oxide (NO·). However, S. aureus lacks the NO·-sensing transcriptional regulator NsrR that is used by many bacteria to sense and respond to NO·. In this study, we show that S. aureus is able to sense and respond to both NO· and hypoxia by means of the SrrAB two-component system (TCS). Analysis of the S. aureus transcriptome during nitrosative stress demonstrates the expression of SrrAB-dependent genes required for cytochrome biosynthesis and assembly (qoxABCD, cydAB, hemABCX), anaerobic metabolism (pflAB, adhE, nrdDG), iron-sulfur cluster repair (scdA), and NO· detoxification (hmp). Targeted mutations in SrrAB-regulated loci show that hmp and qoxABCD are required for NO· resistance, whereas nrdDG is specifically required for anaerobic growth. We also show that SrrAB is required for survival in static biofilms, most likely due to oxygen limitation. Activation by hypoxia, NO·, or a qoxABCD quinol oxidase mutation suggests that the SrrAB TCS senses impaired electron flow in the electron transport chain rather than directly interacting with NO· in the manner of NsrR. Nevertheless, like NsrR, SrrAB achieves the physiological goals of selectively expressing hmp in the presence of NO· and minimizing the potential for Fenton chemistry. Activation of the SrrAB regulon allows S. aureus to maintain energy production and essential biosynthetic processes, repair damage, and detoxify NO· in diverse host environments.ImportanceThe Hmp flavohemoglobin is required for nitric oxide resistance and is widely distributed in bacteria. Hmp expression must be tightly regulated, because expression under aerobic conditions in the absence of nitric oxide can exacerbate oxidative stress. In most organisms, hmp expression is controlled by the Fe-S cluster-containing repressor NsrR, but this transcriptional regulator is absent in the human pathogen Staphylococcus aureus. We show here that S. aureus achieves hmp regulation in response to nitric oxide and oxygen limitation by placing it under the control of the SrrAB two-component system, which senses reduced electron flow through the respiratory chain. This provides a striking example of convergent evolution, in which the common physiological goals of responding to nitrosative stress while minimizing Fenton chemistry are achieved by distinct regulatory mechanisms.
Project description:Previous studies have shown that the Helicobacter pylori ArsRS two-component signal transduction system contributes to acid-responsive gene expression. To identify additional members of the ArsRS regulon and further investigate the regulatory role of the ArsRS system, we analyzed protein expression in wild-type and arsS null mutant strains. Numerous proteins were differentially expressed in an arsS mutant strain compared to a wild-type strain when the bacteria were cultured at pH 5.0 and also when they were cultured at pH 7.0. Genes encoding 14 of these proteins were directly regulated by the ArsRS system, based on observed binding of ArsR to the relevant promoter regions. The ArsRS-regulated proteins identified in this study contribute to acid resistance (urease and amidase), acetone metabolism (acetone carboxylase), resistance to oxidative stress (thioredoxin reductase), quorum sensing (Pfs), and several other functions. These results provide further definition of the ArsRS regulon and underscore the importance of the ArsRS system in regulating expression of H. pylori proteins during bacterial growth at both neutral pH and acidic pH.
Project description:Helicobacter pylori encounters a wide range of pH within the human stomach. In a comparison of H. pylori cultured in vitro under neutral or acidic conditions, about 15% of genes are differentially expressed, and corresponding changes are detectable for many of the encoded proteins. The ArsRS two-component system (TCS), comprised of the sensor kinase ArsS and its cognate response regulator ArsR, has an important role in mediating pH-responsive changes in H. pylori gene expression. In this study, we sought to delineate the pH-responsive ArsRS regulon and further define the role of ArsR in pH-responsive gene expression. We compared H. pylori strains containing an intact ArsRS system with an arsS null mutant or strains containing site-specific mutations of a conserved aspartate residue (D52) in ArsR, which is phosphorylated in response to signals relayed by the cognate sensor kinase ArsS. We identified 178 genes that were pH-responsive in strains containing an intact ArsRS system but not in ΔarsS or arsR mutants. These constituents of the pH-responsive ArsRS regulon include genes involved in acid acclimatization (ureAB, amidases), oxidative stress responses (katA, sodB), transcriptional regulation related to iron or nickel homeostasis (fur, nikR), and genes encoding outer membrane proteins (including sabA, alpA, alpB, hopD [labA], and horA). When comparing H. pylori strains containing an intact ArsRS TCS with arsRS mutants, each cultured at neutral pH, relatively few genes are differentially expressed. Collectively, these data suggest that ArsRS-mediated gene regulation has an important role in H. pylori adaptation to changing pH conditions.
Project description:About 200 genes of the gastric pathogen Helicobacter pylori increase expression at medium pHs of 6.2, 5.5, and 4.5, an increase that is abolished or much reduced by the buffering action of urease. Genes up-regulated by a low pH include the two-component system HP0165-HP0166, suggesting a role in the regulation of some of the pH-sensitive genes. To identify targets of HP0165-HP0166, the promoter regions of genes up-regulated by a low pH were grouped based on sequence similarity. Probes for promoter sequences representing each group were subjected to electrophoretic mobility shift assays (EMSA) with recombinant HP0166-His(6) or a mutated response regulator, HP0166-D52N-His(6), that can specifically determine the role of phosphorylation of HP0166 in binding (including a control EMSA with in-vitro-phosphorylated HP0166-His(6)). Nineteen of 45 promoter-regulatory regions were found to interact with HP0166-His(6). Seven promoters for genes encoding alpha-carbonic anhydrase, omp11, fecD, lpp20, hypA, and two with unknown function (pHP1397-1396 and pHP0654-0675) were clustered in gene group A, which may respond to changes in the periplasmic pH at a constant cytoplasmic pH and showed phosphorylation-dependent binding in EMSA with HP0166-D52N-His(6). Twelve promoters were clustered in groups B and C whose up-regulation likely also depends on a reduction of the cytoplasmic pH at a medium pH of 5.5 or 4.5. Most of the target promoters in groups B and C showed phosphorylation-dependent binding with HP0166-D52N-His(6), but promoters for ompR (pHP0166-0162), pHP0682-0681, and pHP1288-1289 showed phosphorylation-independent binding. These findings, combined with DNase I footprinting, suggest that HP0165-0166 is an acid-responsive signaling system affecting the expression of pH-sensitive genes. Regulation of these genes responds either to a decrease in the periplasmic pH alone (HP0165 dependent) or also to a decrease in the cytoplasmic pH (HP0165 independent).
Project description:The Gram-negative gastric pathogen Helicobacter pylori depends on natural transformation for genomic plasticity, which leads to host adaptation and spread of resistances. Here, we show that H. pylori takes up covalently labeled fluorescent DNA preferentially at the cell poles and that uptake is dependent on the type IV secretion system ComB. By titration of external pH and detection of accessibility of the fluorophor by protons, we localized imported fluorescent DNA in the periplasm. Single molecule analysis revealed that outer membrane DNA transport occurred at a velocity of 1.3 kbp x s(-1) and that previously imported DNA was reversibly extracted from the bacterium at pulling forces exceeding 23 pN. Thus, transport velocities were 10-fold higher than in Bacillus subtilis, and stalling forces were substantially lower. dsDNA stained with the intercalator YOYO-1 was transiently detected in the periplasm in wild-type H. pylori but was periplasmatically trapped in a mutant lacking the B. subtilis membrane-channel homolog ComEC. We conclude that H. pylori uses a two-step DNA uptake mechanism in which ComB transports dsDNA across the outer membrane at low force and poor specificity for DNA structure. Subsequently, Hp-ComEC mediates transport into the cytoplasm, leading to the release of the noncovalently bound DNA dye. Our findings fill the gap to propose a model for composite DNA uptake machineries in competent bacteria, all comprising the conserved ComEC channel for cytoplasmic membrane transport in combination with various transporters for access of external DNA to the cytoplasmic membrane.
Project description:Helicobacter pylori, a Gram-negative bacterial pathogen prevalent in the human population, is the causative agent of severe gastric diseases. An H. pylori type IV secretion (T4S) system encoded by the cytotoxin-associated gene pathogenicity island (cagPAI) is responsible for communication with host cells. As a component of the cagPAI T4S system core complex, CagX plays an important role in virulence-protein translocation into the host cells. In this work, the crystal structure of the C-terminal domain of CagX (CagXct), which is a homologue of the VirB9 protein from the VirB/D4 T4S system, is presented. CagXct is only the second three-dimensional structure to be elucidated of a VirB9-like protein. Another homologue, TraO, which is encoded on the Escherichia coli conjugative plasmid pKM101, shares only 19% sequence identity with CagXct; however, there is a remarkable similarity in tertiary structure between these two β-sandwich protein domains. Most of the residues that are conserved between CagXct and TraO are located within the protein core and appear to be responsible for the preservation of this domain fold. The studies presented here will contribute to our understanding of different bacterial T4S systems.