AKT antagonist AZD5363 influences estrogen receptor function in endocrine resistant breast cancer and synergizes with fulvestrant (ICI182780) in vivo
Ontology highlight
ABSTRACT: Phosphoinositide-3-kinase/protein-kinaseB/mammalian target of rapamycin (PI3K/AKT/mTOR) signalling plays an important role in breast cancer (BC). Its interaction with estrogen receptor (ER) signalling becomes more complex and inter-dependent with acquired endocrine resistance. Targeting mTOR combined with endocrine therapy has shown clinical utility, however, a negative feedback-loop exists downstream of PI3K/AKT/mTOR. Direct blockade of AKT together with endocrine therapy may improve BC treatment. AZD5363, a novel pan-AKT kinase catalytic inhibitor, was examined in a panel of ER+ BC cell lines (MCF7, HCC1428, T47D, ZR75.1) adapted to long-term-estrogen-deprivation (LTED) or tamoxifen (TamR). AZD5363 caused a dose-dependent decrease in proliferation in all cell lines tested (GI50<500nM) except HCC1428 and HCC1428-LTED. T47D-LTED and ZR75-LTED were the most sensitive of the lines (GI50~100nM). AZD5363 re-sensitised TamR cells to tamoxifen and acted synergistically with fulvestrant. AZD5363 decreased p-AKT/mTOR targets leading to a reduction in ERα-mediated transcription in a context specific manner and concomitant decrease in recruitment of ER and CREB-binding protein (CBP) to estrogen-response-elements located on the TFF1, PGR and GREB1 promoters. Furthermore, AZD5363 reduced expression of cell-cycle-regulatory proteins. Global gene expression highlighted ERBB2-ERBB3, ERK5 and IGF1 signaling pathways driven by MYC as potential feedback-loops. Combined treatment with AZD5363 and fulvestrant showed synergy in an ER+ patient derived xenograft and delayed tumour progression post-cessation of therapy. These data support the combination of AZD5363 with fulvestrant as a potential therapy for BC that is sensitive or resistant to E-deprivation or tamoxifen and that activated AKT is a determinant of response, supporting the need for clinical evaluation.
ORGANISM(S): Homo sapiens
PROVIDER: GSE69893 | GEO | 2015/06/29
SECONDARY ACCESSION(S): PRJNA287034
REPOSITORIES: GEO
ACCESS DATA