TBR1 Regulates Autism Risk Genes in the Developing Neocortex
Ontology highlight
ABSTRACT: Exome sequencing studies have identified multiple genes harboring de novo loss-of-function (LoF) variants in individuals with autism spectrum disorders (ASD), including TBR1, a master regulator of cortical development. We performed ChIP-seq for TBR1 during mouse cortical neurogenesis and show that TBR1-bound regions are enriched adjacent to ASD genes. ASD genes were also enriched among genes that are differentially expressed in Tbr1 knockouts, which together with the ChIP-seq data, suggests direct transcriptional regulation. Of the 9 ASD genes examined, 7 were misexpressed in the cortices of Tbr1 knockout mice, including 6 with increased expression in the deep cortical layers. ASD genes with adjacent cortical TBR1 ChIP-seq peaks also showed unusually low levels of LoF mutations in a reference human population and among Icelanders. We then leveraged TBR1 binding to identify an appealing subset of candidate ASD genes. Our findings highlight a TBR1-regulated network of ASD genes in the developing neocortex that are relatively intolerant to LoF mutations, indicating that these genes may play critical roles in normal cortical development.
ORGANISM(S): Mus musculus
PROVIDER: GSE71384 | GEO | 2016/06/17
SECONDARY ACCESSION(S): PRJNA291070
REPOSITORIES: GEO
ACCESS DATA