Project description:Genome wide DNA methylation profiling of normoxic and hypoxic non-small-cell lung cancer samples for 5mC and 5hmC. The Illumina Infinium 450k Human DNA methylation Beadchip v1.2 was used to obtain DNA methylation and hydroxymethylation profiles across 485,512 CpGs from DNA extracted from fresh-frozen tumor samples. Samples included 12 hypoxic and 12 normoxic tumor samples, with hypoxia determined according to the hypoxia metagene score (Buffa et al, Br J Cancer 2010). To profile hydroxymethylation, 5hmC was glycosylated and 5mC was oxidised as described by Yu and colleagues (Nat Protoc 2012), and hydroxymethylation and methylation were differentially profiled according to the Nazor and colleagues (Genomics 2014). Hypermethylation of tumor suppressor gene (TSG) promoters confers growth advantages to cancer cells, but how these changes arise is poorly understood. Here, we report that tumor hypoxia reduces the activity of oxygen-dependent TET enzymes, which catalyze DNA de-methylation through 5-methylcytosine oxidation. This occurs independently of hypoxia-associated alterations in TET gene expression, basal metabolism, HIF activity or nuclear reactive oxygen species, but directly depends on oxygen shortage. Hypoxia-induced loss of TET activity increases hypermethylation at gene promoters in vitro, while also in patients, gene promoters are markedly more methylated in hypoxic than normoxic tumors. Affected genes are frequently involved in DNA repair, cell cycle regulation, angiogenesis and metastasis, indicating cellular selection of hypermethylation events. Overall, up to 50% of the tumor-associated hypermethylation is ascribable to hypoxia across various cancer types. Accordingly, spontaneous murine breast tumors become hypermethylated when rendered hypoxic through vessel pruning, whereas vessel normalisation rescues this effect. Tumor hypoxia thus acts as a novel regulator underlying DNA methylation.
Project description:Hypermethylation of tumor suppressor gene (TSG) promoters confers growth advantages to cancer cells, but how these changes arise is poorly understood. Here, we report that tumor hypoxia reduces the activity of oxygen-dependent TET enzymes, which catalyze DNA de-methylation through 5-methylcytosine oxidation. This occurs independently of hypoxia-associated alterations in TET gene expression, basal metabolism, HIF activity or nuclear reactive oxygen species, but directly depends on oxygen shortage. Hypoxia-induced loss of TET activity increases hypermethylation at gene promoters in vitro, while also in patients, gene promoters are markedly more methylated in hypoxic than normoxic tumors. Affected genes are frequently involved in DNA repair, cell cycle regulation, angiogenesis and metastasis, indicating cellular selection of hypermethylation events. Overall, up to 50% of the tumor-associated hypermethylation is ascribable to hypoxia across various cancer types. Accordingly, spontaneous murine breast tumors become hypermethylated when rendered hypoxic through vessel pruning, whereas vessel normalisation rescues this effect. Tumor hypoxia thus acts as a novel regulator underlying DNA methylation.
Project description:Hypermethylation of tumor suppressor gene (TSG) promoters confers growth advantages to cancer cells, but how these changes arise is poorly understood. Here, we report that tumor hypoxia reduces the activity of oxygen-dependent TET enzymes, which catalyze DNA de-methylation through 5-methylcytosine oxidation. This occurs independently of hypoxia-associated alterations in TET gene expression, basal metabolism, HIF activity or nuclear reactive oxygen species, but directly depends on oxygen shortage. Hypoxia-induced loss of TET activity increases hypermethylation at gene promoters in vitro, while also in patients, gene promoters are markedly more methylated in hypoxic than normoxic tumors. Affected genes are frequently involved in DNA repair, cell cycle regulation, angiogenesis and metastasis, indicating cellular selection of hypermethylation events. Overall, up to 50% of the tumor-associated hypermethylation is ascribable to hypoxia across various cancer types. Accordingly, spontaneous murine breast tumors become hypermethylated when rendered hypoxic through vessel pruning, whereas vessel normalisation rescues this effect. Tumor hypoxia thus acts as a novel regulator underlying DNA methylation.
Project description:Hypermethylation of the promoters of tumour suppressor genes represses transcription of these genes, conferring growth advantages to cancer cells. How these changes arise is poorly understood. Here we show that the activity of oxygen-dependent ten-eleven translocation (TET) enzymes is reduced by tumour hypoxia in human and mouse cells. TET enzymes catalyse DNA demethylation through 5-methylcytosine oxidation. This reduction in activity occurs independently of hypoxia-associated alterations in TET expression, proliferation, metabolism, hypoxia-inducible factor activity or reactive oxygen species, and depends directly on oxygen shortage. Hypoxia-induced loss of TET activity increases hypermethylation at gene promoters in vitro. In patients, tumour suppressor gene promoters are markedly more methylated in hypoxic tumour tissue, independent of proliferation, stromal cell infiltration and tumour characteristics. Our data suggest that up to half of hypermethylation events are due to hypoxia, with these events conferring a selective advantage. Accordingly, increased hypoxia in mouse breast tumours increases hypermethylation, while restoration of tumour oxygenation abrogates this effect. Tumour hypoxia therefore acts as a novel regulator of DNA methylation.
Project description:Hypermethylation of tumor suppressor gene (TSG) promoters confers growth advantages to cancer cells, but how these changes arise is poorly understood. Here, we report that tumor hypoxia reduces the activity of oxygen-dependent TET enzymes, which catalyze DNA de-methylation through 5-methylcytosine oxidation. This occurs independently of hypoxia-associated alterations in TET gene expression, basal metabolism, HIF activity or nuclear reactive oxygen species, but directly depends on oxygen shortage. Hypoxia-induced loss of TET activity increases hypermethylation at gene promoters in vitro, while also in patients, gene promoters are markedly more methylated in hypoxic than normoxic tumors. Affected genes are frequently involved in DNA repair, cell cycle regulation, angiogenesis and metastasis, indicating cellular selection of hypermethylation events. Overall, up to 50% of the tumor-associated hypermethylation is ascribable to hypoxia across various cancer types. Accordingly, spontaneous murine breast tumors become hypermethylated when rendered hypoxic through vessel pruning, whereas vessel normalisation rescues this effect. Tumor hypoxia thus acts as a novel regulator underlying DNA methylation.
Project description:Hypermethylation of tumor suppressor gene (TSG) promoters confers growth advantages to cancer cells, but how these changes arise is poorly understood. Here, we report that tumor hypoxia reduces the activity of oxygen-dependent TET enzymes, which catalyze DNA de-methylation through 5-methylcytosine oxidation. This occurs independently of hypoxia-associated alterations in TET gene expression, basal metabolism, HIF activity or nuclear reactive oxygen species, but directly depends on oxygen shortage. Hypoxia-induced loss of TET activity increases hypermethylation at gene promoters in vitro, while also in patients, gene promoters are markedly more methylated in hypoxic than normoxic tumors. Affected genes are frequently involved in DNA repair, cell cycle regulation, angiogenesis and metastasis, indicating cellular selection of hypermethylation events. Overall, up to 50% of the tumor-associated hypermethylation is ascribable to hypoxia across various cancer types. Accordingly, spontaneous murine breast tumors become hypermethylated when rendered hypoxic through vessel pruning, whereas vessel normalisation rescues this effect. Tumor hypoxia thus acts as a novel regulator underlying DNA methylation.
Project description:Hypoxia, a hallmark of most solid tumors, leads to aberrations in epigenetic modifications promoting malignant tumor phenotypes, including metastatic features and stem cell-like characteristics. Aberrant DNA methylation has been considered to play an essential role during tumor progression and tightly associate with tumor malignancy. However, the mechanism by which hypoxia alters DNA methylation to promote tumor malignancy remains poorly understood. Ten-eleven translocation 1-3 (TET1-3) proteins, which catalyze the conversion of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), play a critical role in the DNA demethylation that controls different biological processes. Here we demonstrate that the expression of TET1 and TET3 is closely associated with tumor hypoxia, tumor malignancy and poor prognosis of patients with breast cancer. Hypoxia results in deregulation of TET1 and TET3, leading to breast tumor initiating cell (BTIC) properties. Mechanically, hypoxia regulates expression of TET1 and TET3 via hypoxia-inducible factor-1a (HIF-1a), thereby resulting in 5hmC genome-wide changes, which in turn leads to the upregulation of TNFa expression and activation of its downstream p38-MAPK pathway. Importantly, signal transduction through the TET-TNFa-p38-MAPK signaling axis is required for the acquisition of BTIC characteristics and chemotherapy resistance, leading to more malignant tumor phenotypes. Inhibition of the hypoxia-TET-TNFα-p38-MAPK signaling pathway results in compromised BTIC properties and tumorigenicity in vitro and in vivo, suggesting a possible therapeutic strategy.
Project description:Resistance to irradiation (IR) remains a major therapeutic challenge in tumor radiotherapy. The development of novel tumor-specific radiosensitizers is crucial for effective radiotherapy against solid tumors. Here, we revealed that remodeling tumor tissue penetration via tumor-penetrating peptide internalizing arginine-glycine-aspartic acid RGD (iRGD) enhanced irradiation efficacy. The growth of 4T1 and CT26 multicellular tumor spheroids (MCTS) and tumors was delayed significantly by the treatment with IR and iRGD. Mechanistically, iRGD reduced hypoxia in MCTS and tumors, resulting in enhanced apoptosis after MCTS and tumors were treated with IR and iRGD. This is the first report that shows enhanced radiation efficacy by remodeling tumor-specific tissue penetration with iRGD, implying the potential clinical application of peptides in future tumor therapy.
Project description:ObjectiveTo investigate the role of chemokines in Wilms tumours, especially their chemotaxis to immune cells and the role of DNA methylation in regulating the expression level of chemokines.MethodsRNAseqV2 gene expression and clinical data were downloaded from the TARGET database. DNA methylation data were downloaded from the GEO and cBioPortal database. The difference analysis and Kaplan-Meier(KM) analysis of chemokines were performed by edgeR package. Then predictive model based on chemokines was constructed by lasso regression and multivariate COX regression. ROC curve, DCA curve, Calibration curve, and Nomogram were used to evaluate the prognostic model. MCPcounter and Cibersort algorithm was used to calculate the infiltration of immune cells in Wilms tumour and para-tumour samples. Then the difference analysis of the immune cells was performed. The relationship between chemokines and immune cells were calculated by Pearson correlation. In addition, DNA methylation differences between Wilms tumour and para-tumour samples was performed. The correlation between DNA methylation and mRNA expression was calculated by Pearson correlation. Western blot(WB)and immunofluorescence were used to confirm the differential expression of CX3CL1 and T cells, and the correlation between them.ResultsA total of 16 chemokines were differentially expressed in tumour and para-tumour samples. A total of seven chemokines were associated with survival. CCL2 and CX3CL1 were positively correlated with prognosis, while high expression of CCL3, CCL8, CCL15, CCL18 and CXCL9 predicted poor prognosis. By lasso regression and multivariate COX regression, CCL3, CCL15, CXCL9 and CX3CL1 were finally included to construct a prediction model. The model shows good prediction ability. MCPcounter and Cibersort algorithm both showed that T cells were higher in para-tumour tissues than cancer tissues. Correlation analysis showed that CX3CL1 had a strong correlation with T cells. These were verified by Weston blot and immunofluorescence. DNA methylation analysis showed that various chemokines were different in para-tumours and tumours. CX3CL1 was hypermethylated in tumours, and the degree of methylation was negatively correlated with mRNA expression.Conclusion1. There is low T cell infiltration in nephroblastoma. 2. Chemokines such as CX3CL1 indicate a favourable prognosis and positively correlate with the number of T cells. 3. chemokines such as CX3CL1 are negatively regulated by DNA hypermethylation.